Strange IndiaStrange India


  • Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article 
    ADS 

    Google Scholar 

  • Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

    Article 
    ADS 

    Google Scholar 

  • Freiburghaus, C., Rosswog, S. & Thielemann, F. K. R-process in neutron star mergers. Astrophys. J. 525, L121–L124 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016).

    Article 
    ADS 

    Google Scholar 

  • Hotokezaka, K. & Nakar, E. Radioactive heating rate of r-process elements and macronova light curve. Astrophys. J. 891, 152 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, J.-P. et al. Long-duration gamma-ray burst and associated kilonova emission from fast-spinning black hole–neutron star mergers. Astrophys. J. 936, L10 (2022).

    Article 
    ADS 

    Google Scholar 

  • Wollaeger, R. T. et al. Impact of pulsar and fallback sources on multifrequency kilonova models. Astrophys. J. 880, 22 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Levan, A. et al. Heavy element production in a compact object merger observed by JWST. Nature https://doi.org/10.1038/s41586-023-06759-1 (2023).

  • Sun, H. et al. Magnetar emergence in a peculiar gamma-ray burst from a compact star merger. Preprint at https://arxiv.org/abs/2307.05689 (2023).

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article 
    ADS 

    Google Scholar 

  • Freedman, W. L. et al. The Carnegie-Chicago Hubble Program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch. Astrophys. J. 882, 34 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Waxman, E., Ofek, E. O. & Kushnir, D. Late-time kilonova light curves and implications to GW170817. Astrophys. J. 878, 93 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kasliwal, M. M. et al. Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Mon. Not. R. Astron. Soc. 510, L7–L12 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Troja, E. et al. A nearby long gamma-ray burst from a merger of compact objects. Nature 612, 228–231 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gehrels, N. et al. A new γ-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, B. et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat. Commun. 6, 7323 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, Z.-P. et al. The light curve of the macronova associated with the long-short burst GRB 060614. Astrophys. J. 811, L22 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. A long-duration gamma-ray burst with a peculiar origin. Nature 612, 232–235 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ryan, G., van Eerten, H., Piro, L. & Troja, E. Gamma-ray burst afterglows in the multimessenger era: numerical models and closure relations. Astrophys. J. 896, 166 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Valenti, S. et al. The diversity of type II supernova versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barnes, J. et al. Kilonovae across the nuclear physics landscape: the impact of nuclear physics uncertainties on r-process-powered emission. Astrophys. J. 918, 44 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Frey, L. H. et al. The Los Alamos Supernova Light-curve Project: computational methods. Astrophys. J. 204, 16 (2013).

    Article 

    Google Scholar 

  • Fontes, C. J., Fryer, C. L., Hungerford, A. L., Wollaeger, R. T. & Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 493, 4143–4171 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fontes, C. J., Fryer, C. L., Wollaeger, R. T., Mumpower, M. R. & Sprouse, T. M. Actinide opacities for modelling the spectra and light curves of kilonovae. Mon. Not. R. Astron. Soc. 519, 2862–2878 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Californium-254 and kilonova light curves. Astrophys. J. 863, L23 (2018).

    Article 
    ADS 

    Google Scholar 

  • Holmbeck, E. M. et al. Superheavy elements in kilonovae. Astrophys. J. 951, L13 (2023).

    Article 
    ADS 

    Google Scholar 

  • Waxman, E., Ofek, E. O., Kushnir, D. & Gal-Yam, A. Constraints on the ejecta of the GW170817 neutron star merger from its electromagnetic emission. Mon. Not. R. Astron. Soc. 481, 3423–3441 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V, Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).

  • Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article 
    ADS 

    Google Scholar 

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar 

  • Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

  • Krühler, T. et al. The SEDs and host galaxies of the dustiest GRB afterglows. Astron. Astrophys. 534, A108 (2011).

    Article 

    Google Scholar 

  • Sneppen, A. et al. Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature 614, 436–439 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Levan, A. J. et al. GRB 230307A: JWST NIRSpec observations, possible higher redshift. GRB Coord. Netw. Circ. No. 33580 (2023).

  • Windhorst, R. A. et al. JWST PEARLS. Prime Extragalactic Areas for Reionization and Lensing Science: project overview and first results. Astron. J. 165, 13 (2023).

    Article 
    ADS 

    Google Scholar 

  • Chang, H.-Y. & Kim, H.-I. On spatial distribution of short gamma-ray bursts from extragalactic magnetar flares. J. Astron. Space Sci. 19, 1–6 (2002).

    Article 
    ADS 

    Google Scholar 

  • Dichiara, S. et al. A luminous precursor in the extremely bright GRB 230307A. Astrophys. J. 954, L29 (2023).

    Article 
    ADS 

    Google Scholar 

  • Yang, J. et al. GRB 200415A: a short gamma-ray burst from a magnetar giant flare? Astrophys. J. 899, 106 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, Y., Xia, Z.-Q., Zheng, T.-C., Ren, J. & Fan, Y.-Z. A broken “α–intensity” relation caused by the evolving photosphere emission and the nature of the extraordinarily bright GRB 230307A. Astrophys. J. 953, L8 (2023).

    Article 
    ADS 

    Google Scholar 

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar 

  • O’Connor, B. et al. A deep survey of short GRB host galaxies over z ~ 0–2: implications for offsets, redshifts, and environments. Mon. Not. R. Astron. Soc. 515, 4890–4928 (2022).

    Article 
    ADS 

    Google Scholar 

  • Jin, Z.-P. et al. A kilonova associated with GRB 070809. Nat. Astron. 4, 77–82 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • O’Connor, B., Beniamini, P. & Kouveliotou, C. Constraints on the circumburst environments of short gamma-ray bursts. Mon. Not. R. Astron. Soc. 495, 4782–4799 (2020).

    Article 
    ADS 

    Google Scholar 

  • Norris, J. P. & Bonnell, J. T. Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266–275 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dichiara, S. et al. Evidence of extended emission in GRB 181123B and other high-redshift short GRBs. Astrophys. J. 911, L28 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Ann. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar 

  • Kobulnicky, H. A. & Kewley, L. J. Metallicities of 0.3<z<1.0 galaxies in the GOODS-North field. Astrophys. J. 617, 240–261 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with Prospector. Astrophys. J. 254, 22 (2021).

    Article 
    CAS 

    Google Scholar 

  • O’Connor, B. et al. A tale of two mergers: constraints on kilonova detection in two short GRBs at z ~ 0.5. Mon. Not. R. Astron. Soc. 502, 1279–1298 (2021).

    ADS 

    Google Scholar 

  • Palmerio, J. T. et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. III. Stellar masses, star formation rates, and metallicities at z > 1. Astron. Astrophys. 623, A26 (2019).

    Article 
    CAS 

    Google Scholar 

  • Whitaker, K. E., van Dokkum, P. G., Brammer, G. & Franx, M. The star formation mass sequence out to z = 2.5. Astrophys. J. 754, L29 (2012).

    Article 
    ADS 

    Google Scholar 

  • Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    Article 
    ADS 

    Google Scholar 

  • O’Connor, B. et al. A structured jet explains the extreme GRB 221009a. Sci. Adv. 9, eadi1405 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Becerra, R. L. et al. Deciphering the unusual stellar progenitor of GRB 210704A. Mon. Not. R. Astron. Soc. 522, 5204–5216 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article 
    ADS 

    Google Scholar 

  • Srinivasaragavan, G. P. et al. A sensitive search for supernova emission associated with the extremely energetic and nearby GRB 221009A. Astrophys. J. 949, L39 (2023).

    Article 
    ADS 

    Google Scholar 

  • Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

    Article 
    ADS 

    Google Scholar 

  • Zhong, S.-Q., Li, L. & Dai, Z.-G. GRB 211211A: a neutron star-white dwarf merger? Astrophys. J. 947, L21 (2023).

    Article 
    ADS 

    Google Scholar 

  • Fryer, C. L., Woosley, S. E., Herant, M. & Davies, M. B. Merging white dwarf/black hole binaries and gamma-ray bursts. Astrophys. J. 520, 650–660 (1999).

    Article 
    ADS 

    Google Scholar 

  • Kaltenborn, M. A. R. et al. Abundances and transients from neutron star-white dwarf mergers. Astrophys. J. 956, 71 (2023).

    Article 
    ADS 

    Google Scholar 

  • Bobrick, A., Zenati, Y., Perets, H. B., Davies, M. B. & Church, R. Transients from one white dwarf–neutron star/black hole mergers. Mon. Not. R. Astron. Soc. 510, 3758–3777 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lu, W. & Quataert, E. Late-time accretion in neutron star mergers: implications for short gamma-ray bursts and kilonovae. Mon. Not. R. Astron. Soc. 522, 5848–5861 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gao, H., Lei, W.-H., Zou, Y.-C., Wu, X.-F. & Zhang, B. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astron. Rev. 57, 141–190 (2013).

    Article 
    ADS 

    Google Scholar 

  • Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article 

    Google Scholar 

  • Mereghetti, S., Rigoselli, M., Salvaterra, R., Tiengo, A. & Pacholski, D. P. XMM-Newton and INTEGRAL observations of the bright GRB 230307A: vanishing of the local absorption and limits on the dust in the Magellanic Bridge. Astrophys. J. 956, 97 (2023).

    Article 
    ADS 

    Google Scholar 

  • Zhang, B. & Mészáros, P. Gamma-ray bursts: progress, problems & prospects. Int. J. Mod. Phys. A 19, 2385–2472 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *