Strange IndiaStrange India


  • Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. 116, 9239–9244 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, M. et al. Ocean forcing drives glacier retreat in Greenland. Sci. Adv. 7, eaba7282 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I. & Fahnestock, M. A. Rapid reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf. 125, e2020JF005585 (2020).

    Article 
    ADS 

    Google Scholar 

  • Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

    Article 
    ADS 

    Google Scholar 

  • Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2, 110–114 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • King, M. D. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun. Earth Environ. 1, 1 (2020).

    Article 
    ADS 

    Google Scholar 

  • Moon, T., Joughin, I. & Smith, B. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J. Geophys. Res. Earth Surf. 120, 818–833 (2015).

    Article 
    ADS 

    Google Scholar 

  • Vijay, S. et al. Resolving seasonal ice velocity of 45 Greenlandic glaciers with very high temporal details. Geophys. Res. Lett. 46, 1485–1495 (2019).

    Article 
    ADS 

    Google Scholar 

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  • Enderlin, E. M., Hamilto, G. S., Straneo, F. & Sutherland, D. A. Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg‐congested glacial fjords. Geophys. Res. Lett. 43, 11,287–11,294 (2016).

    Article 

    Google Scholar 

  • Marsh, R. et al. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci. 6, 749–760 (2010).

    Article 
    ADS 

    Google Scholar 

  • Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).

    Article 
    ADS 

    Google Scholar 

  • Choi, Y., Morlighem, M., Rignot, E. & Wood, M. Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Commun. Earth Environ. 2, 26 (2021).

    Article 
    ADS 

    Google Scholar 

  • Rückamp, M., Goelzer, H. & Humbert, A. Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM). Cryosphere 14, 3309–3327 (2020).

    Article 
    ADS 

    Google Scholar 

  • Robel, A. A., Roe, G. H. & Haseloff, M. Response of marine‐terminating glaciers to forcing: time scales, sensitivities, instabilities, and stochastic dynamics. J. Geophys. Res. Earth Surf. 123, 2205–2227 (2018).

    Article 
    ADS 

    Google Scholar 

  • Felikson, D., Nowicki, S., Nias, I., Morlighem, M. & Seroussi, H. Seasonal tidewater glacier terminus oscillations bias multi‐decadal projections of ice mass change. J. Geophys. Res. Earth Surf. 127, e2021JF006249 (2022).

    Article 
    ADS 

    Google Scholar 

  • Schild, K. M. & Hamilton, G. S. Seasonal variations of outlet glacier terminus position in Greenland. J. Glaciol. 59, 759–770 (2013).

    Article 
    ADS 

    Google Scholar 

  • Black, T. E. & Joughin, I. Weekly to monthly terminus variability of Greenland’s marine-terminating outlet glaciers. Cryosphere 17, 1–13 (2023).

    Article 
    ADS 

    Google Scholar 

  • Felikson, D. et al. Steep glacier bed knickpoints mitigate inland thinning in Greenland. Geophys. Res. Lett. 48, e2020GL090112 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    Article 
    ADS 

    Google Scholar 

  • Ultee, L., Felikson, D., Minchew, B., Stearns, L. A. & Riel, B. Helheim Glacier ice velocity variability responds to runoff and terminus position change at different timescales. Nat. Commun. 13, 6022 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fried, M. J. et al. Reconciling drivers of seasonal terminus advance and retreat at 13 Central West Greenland tidewater glaciers. J. Geophys. Res. Earth Surf. 123, 1590–1607 (2018).

    Article 
    ADS 

    Google Scholar 

  • Xu, Y., Rignot, E., Menemenlis, D. & Koppes, M. Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53, 229–234 (2012).

    Article 
    ADS 

    Google Scholar 

  • Morlighem, M., Wood, M., Seroussi, H., Choi, Y. & Rignot, E. Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. Cryosphere 13, 723–734 (2019).

    Article 
    ADS 

    Google Scholar 

  • Simonsen, S. B., Barletta, V. R., Colgan, W. T. & Sørensen, L. S. Greenland Ice Sheet mass balance (1992–2020) from calibrated radar altimetry. Geophys. Res. Lett. 48, e2020GL091216 (2021).

    Article 
    ADS 

    Google Scholar 

  • Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mankoff, K. D. et al. Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data 13, 5001–5025 (2021).

    Article 
    ADS 

    Google Scholar 

  • Velicogna, I. & Wahr, J. Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys. Res. Lett. 40, 3055–3063 (2013).

    Article 
    ADS 

    Google Scholar 

  • The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).

    Article 

    Google Scholar 

  • Khan, S. A. et al. Greenland mass trends from airborne and satellite altimetry during 2011–2020. J. Geophys. Res. Earth Surf. 127, e2021JF006505 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bamber, J. L. et al. Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. J. Geophys. Res. Oceans 123, 1827–1837 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sutherland, D. A. & Pickart, R. S. The East Greenland coastal current: structure, variability, and forcing. Prog. Oceanogr. 78, 58–77 (2008).

    Article 
    ADS 

    Google Scholar 

  • Gou, R., Pennelly, C. & Myers, P. G. The changing behavior of the West Greenland current system in a very high‐resolution model. J. Geophys. Res. Oceans 127, e2022JC018404 (2022).

    Article 
    ADS 

    Google Scholar 

  • Davison, B. J., Cowton, T. R., Cottier, F. R. & Sole, A. J. Iceberg melting substantially modifies oceanic heat flux towards a major Greenlandic tidewater glacier. Nat. Commun. 11, 5983 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castro De La Guardia, L., Hu, X. & Myers, P. G. Potential positive feedback between Greenland Ice Sheet melt and Baffin Bay heat content on the west Greenland shelf. Geophys. Res. Lett. 42, 4922–4930 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article 
    ADS 

    Google Scholar 

  • Swingedouw, D. et al. AMOC recent and future trends: a crucial role for oceanic resolution and Greenland melting? Front. Clim. 4, 838310 (2022).

    Article 

    Google Scholar 

  • Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).

    Article 

    Google Scholar 

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. 105, 1786–1793 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 14, 4254 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, J. et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761–3812 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ciemer, C., Winkelmann, R., Kurths, J. & Boers, N. Impact of an AMOC weakening on the stability of the southern Amazon rainforest. Eur. Phys. J. Spec. Top. 230, 3065–3073 (2021).

    Article 

    Google Scholar 

  • Velasco, J. A. et al. Synergistic impacts of global warming and thermohaline circulation collapse on amphibians. Commun. Biol. 4, 141 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osman, M. B. et al. Industrial-era decline in subarctic Atlantic productivity. Nature 569, 551–555 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ritchie, P. D. L. et al. Shifts in national land use and food production in Great Britain after a climate tipping point. Nat. Food 1, 76–83 (2020).

    Article 

    Google Scholar 

  • Defrance, D. et al. Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proc. Natl Acad. Sci. 114, 6533–6538 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lique, C., Holland, M. M., Dibike, Y. B., Lawrence, D. M. & Screen, J. A. Modeling the Arctic freshwater system and its integration in the global system: lessons learned and future challenges. J. Geophys. Res. Biogeosci. 121, 540–566 (2016).

    Article 

    Google Scholar 

  • Fox-Kemper, B. et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6, 65 (2019).

    Article 

    Google Scholar 

  • Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8, 3071–3104 (2015).

    Article 
    ADS 

    Google Scholar 

  • von Schuckmann, K. et al. Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data 12, 2013–2041 (2020).

    Article 
    ADS 

    Google Scholar 

  • Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J. & Truffer, M. Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level. Cryosphere 15, 5705–5715 (2021).

    Article 
    ADS 

    Google Scholar 

  • Goldberg, D. N., Heimbach, P., Joughin, I. & Smith, B. Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. Cryosphere 9, 2429–2446 (2015).

    Article 
    ADS 

    Google Scholar 

  • Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zhang, E., Catania, G. & Trugman, D. AutoTerm: a “big data” repository of Greenland glacier termini delineated using deep learning. https://egusphere.copernicus.org/preprints/2022/egusphere-2022-1095/ (2022).

  • Enze, Z. AutoTerm: a “big data” repository of glacier termini delineated using deep learning. Zenodo https://doi.org/10.5281/ZENODO.7782039 (2022).

  • Black, T. MEaSUREs weekly to monthly Greenland outlet glacier terminus positions from Sentinel-1 mosaics, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/DGBOSSIULSTD (2022).

  • Joughin, I. & University Of Washington. MEaSUREs annual Greenland outlet glacier terminus positions from SAR mosaics, version 2. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/ESFWE11AVFKW (2021).

  • Cheng, D. et al. Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019. Cryosphere 15, 1663–1675 (2021).

    Article 
    ADS 

    Google Scholar 

  • Cheng, D., Hayes, W. & Larour, E. CALFIN subseasonal Greenland glacial terminus positions, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/7FILV218JZA2 (2021).

  • Goliber, S. et al. TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications. Cryosphere 16, 3215–3233 (2022).

    Article 
    ADS 

    Google Scholar 

  • Goliber, S. & Black, T. TermPicks: a century of Greenland glacier terminus data for use inmachine learning applications. Zenodo https://doi.org/10.5281/ZENODO.5117931 (2021).

  • Gardner, A., Fahnestock, M. & Scambos, T. MEaSUREs ITS_LIVE regional glacier and ice sheet surface velocities, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/6II6VW8LLWJ7 (2022).

  • Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

    Article 
    ADS 

    Google Scholar 

  • Joughin, I. MEaSUREs Greenland ice velocity annual mosaics from SAR and Landsat, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/OBXCG75U7540 (2017).

  • Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf. 117, F01022 (2012).

    Article 
    ADS 

    Google Scholar 

  • Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cuzzone, J. K. et al. The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM). Cryosphere 13, 879–893 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cuzzone, J. K., Young, N. E., Morlighem, M., Briner, J. P. & Schlegel, N.-J. Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings. Cryosphere 16, 2355–2372 (2022).

    Article 
    ADS 

    Google Scholar 

  • Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).

    Article 
    ADS 

    Google Scholar 

  • Dias Dos Santos, T., Morlighem, M. & Brinkerhoff, D. A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model. Cryosphere 16, 179–195 (2022).

    Article 
    ADS 

    Google Scholar 

  • Cuzzone, J. K., Morlighem, M., Larour, E., Schlegel, N. & Seroussi, H. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales. Geosci. Model Dev. 11, 1683–1694 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Howat, I., Ohio State University & Byrd Polar Research Center. MEaSUREs Greenland Ice Mapping Project (GIMP) land ice and ocean classification mask, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/B8X58MQBFUPA (2017).

  • Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

    Article 
    ADS 

    Google Scholar 

  • Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11,051–11,061 (2017).

    Article 
    CAS 

    Google Scholar 

  • Morlighem, M. IceBridge BedMachine Greenland, version 5. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/GMEVBWFLWA7X (2022).

  • Korsgaard, N. J. et al. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data 3, 160032 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mouginot, J. & Rignot, E. Glacier catchments/basins for the Greenland Ice Sheet. Dryad https://doi.org/10.7280/D1WT11 (2019).

  • Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Medley, B., Neumann, T. A., Zwally, H. J. & Smith, B. E. Forty-year simulations of firn processes over the Greenland and Antarctic ice sheets. https://tc.copernicus.org/preprints/tc-2020-266/tc-2020-266.pdf (2020).

  • Schwanghart, W. & Scherler, D. Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).

    Article 
    ADS 

    Google Scholar 

  • Oceans Melting Greenland (OMG). OMG CTD Conductivity Temperature Depth (CTD) profiles. Jet Propulsion Laboratory https://doi.org/10.5067/OMGEV-CTDS1 (2020).

  • Fenty, I. et al. Oceans Melting Greenland: early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).

    Article 

    Google Scholar 

  • Willis, J. et al. Ocean-ice interactions in Inglefield Gulf: early results from NASA’s Oceans Melting Greenland mission. Oceanography 31, 100–108 (2018).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *