Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. 116, 9239–9244 (2019).
Google Scholar
Wood, M. et al. Ocean forcing drives glacier retreat in Greenland. Sci. Adv. 7, eaba7282 (2021).
Google Scholar
Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I. & Fahnestock, M. A. Rapid reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf. 125, e2020JF005585 (2020).
Google Scholar
Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).
Google Scholar
Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2, 110–114 (2009).
Google Scholar
King, M. D. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun. Earth Environ. 1, 1 (2020).
Google Scholar
Moon, T., Joughin, I. & Smith, B. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. J. Geophys. Res. Earth Surf. 120, 818–833 (2015).
Google Scholar
Vijay, S. et al. Resolving seasonal ice velocity of 45 Greenlandic glaciers with very high temporal details. Geophys. Res. Lett. 46, 1485–1495 (2019).
Google Scholar
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
Enderlin, E. M., Hamilto, G. S., Straneo, F. & Sutherland, D. A. Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg‐congested glacial fjords. Geophys. Res. Lett. 43, 11,287–11,294 (2016).
Google Scholar
Marsh, R. et al. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci. 6, 749–760 (2010).
Google Scholar
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).
Google Scholar
Choi, Y., Morlighem, M., Rignot, E. & Wood, M. Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Commun. Earth Environ. 2, 26 (2021).
Google Scholar
Rückamp, M., Goelzer, H. & Humbert, A. Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM). Cryosphere 14, 3309–3327 (2020).
Google Scholar
Robel, A. A., Roe, G. H. & Haseloff, M. Response of marine‐terminating glaciers to forcing: time scales, sensitivities, instabilities, and stochastic dynamics. J. Geophys. Res. Earth Surf. 123, 2205–2227 (2018).
Google Scholar
Felikson, D., Nowicki, S., Nias, I., Morlighem, M. & Seroussi, H. Seasonal tidewater glacier terminus oscillations bias multi‐decadal projections of ice mass change. J. Geophys. Res. Earth Surf. 127, e2021JF006249 (2022).
Google Scholar
Schild, K. M. & Hamilton, G. S. Seasonal variations of outlet glacier terminus position in Greenland. J. Glaciol. 59, 759–770 (2013).
Google Scholar
Black, T. E. & Joughin, I. Weekly to monthly terminus variability of Greenland’s marine-terminating outlet glaciers. Cryosphere 17, 1–13 (2023).
Google Scholar
Felikson, D. et al. Steep glacier bed knickpoints mitigate inland thinning in Greenland. Geophys. Res. Lett. 48, e2020GL090112 (2021).
Google Scholar
Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).
Google Scholar
Ultee, L., Felikson, D., Minchew, B., Stearns, L. A. & Riel, B. Helheim Glacier ice velocity variability responds to runoff and terminus position change at different timescales. Nat. Commun. 13, 6022 (2022).
Google Scholar
Fried, M. J. et al. Reconciling drivers of seasonal terminus advance and retreat at 13 Central West Greenland tidewater glaciers. J. Geophys. Res. Earth Surf. 123, 1590–1607 (2018).
Google Scholar
Xu, Y., Rignot, E., Menemenlis, D. & Koppes, M. Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53, 229–234 (2012).
Google Scholar
Morlighem, M., Wood, M., Seroussi, H., Choi, Y. & Rignot, E. Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. Cryosphere 13, 723–734 (2019).
Google Scholar
Simonsen, S. B., Barletta, V. R., Colgan, W. T. & Sørensen, L. S. Greenland Ice Sheet mass balance (1992–2020) from calibrated radar altimetry. Geophys. Res. Lett. 48, e2020GL091216 (2021).
Google Scholar
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).
Google Scholar
Mankoff, K. D. et al. Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data 13, 5001–5025 (2021).
Google Scholar
Velicogna, I. & Wahr, J. Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys. Res. Lett. 40, 3055–3063 (2013).
Google Scholar
The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).
Google Scholar
Khan, S. A. et al. Greenland mass trends from airborne and satellite altimetry during 2011–2020. J. Geophys. Res. Earth Surf. 127, e2021JF006505 (2022).
Google Scholar
Bamber, J. L. et al. Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. J. Geophys. Res. Oceans 123, 1827–1837 (2018).
Google Scholar
Sutherland, D. A. & Pickart, R. S. The East Greenland coastal current: structure, variability, and forcing. Prog. Oceanogr. 78, 58–77 (2008).
Google Scholar
Gou, R., Pennelly, C. & Myers, P. G. The changing behavior of the West Greenland current system in a very high‐resolution model. J. Geophys. Res. Oceans 127, e2022JC018404 (2022).
Google Scholar
Davison, B. J., Cowton, T. R., Cottier, F. R. & Sole, A. J. Iceberg melting substantially modifies oceanic heat flux towards a major Greenlandic tidewater glacier. Nat. Commun. 11, 5983 (2020).
Google Scholar
Castro De La Guardia, L., Hu, X. & Myers, P. G. Potential positive feedback between Greenland Ice Sheet melt and Baffin Bay heat content on the west Greenland shelf. Geophys. Res. Lett. 42, 4922–4930 (2015).
Google Scholar
Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).
Google Scholar
Swingedouw, D. et al. AMOC recent and future trends: a crucial role for oceanic resolution and Greenland melting? Front. Clim. 4, 838310 (2022).
Google Scholar
Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).
Google Scholar
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. 105, 1786–1793 (2008).
Google Scholar
Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).
Google Scholar
Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 14, 4254 (2023).
Google Scholar
Hansen, J. et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761–3812 (2016).
Google Scholar
Ciemer, C., Winkelmann, R., Kurths, J. & Boers, N. Impact of an AMOC weakening on the stability of the southern Amazon rainforest. Eur. Phys. J. Spec. Top. 230, 3065–3073 (2021).
Google Scholar
Velasco, J. A. et al. Synergistic impacts of global warming and thermohaline circulation collapse on amphibians. Commun. Biol. 4, 141 (2021).
Google Scholar
Osman, M. B. et al. Industrial-era decline in subarctic Atlantic productivity. Nature 569, 551–555 (2019).
Google Scholar
Ritchie, P. D. L. et al. Shifts in national land use and food production in Great Britain after a climate tipping point. Nat. Food 1, 76–83 (2020).
Google Scholar
Defrance, D. et al. Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proc. Natl Acad. Sci. 114, 6533–6538 (2017).
Google Scholar
Lique, C., Holland, M. M., Dibike, Y. B., Lawrence, D. M. & Screen, J. A. Modeling the Arctic freshwater system and its integration in the global system: lessons learned and future challenges. J. Geophys. Res. Biogeosci. 121, 540–566 (2016).
Google Scholar
Fox-Kemper, B. et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6, 65 (2019).
Google Scholar
Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8, 3071–3104 (2015).
Google Scholar
von Schuckmann, K. et al. Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data 12, 2013–2041 (2020).
Google Scholar
Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J. & Truffer, M. Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level. Cryosphere 15, 5705–5715 (2021).
Google Scholar
Goldberg, D. N., Heimbach, P., Joughin, I. & Smith, B. Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. Cryosphere 9, 2429–2446 (2015).
Google Scholar
Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).
Google Scholar
Zhang, E., Catania, G. & Trugman, D. AutoTerm: a “big data” repository of Greenland glacier termini delineated using deep learning. https://egusphere.copernicus.org/preprints/2022/egusphere-2022-1095/ (2022).
Enze, Z. AutoTerm: a “big data” repository of glacier termini delineated using deep learning. Zenodo https://doi.org/10.5281/ZENODO.7782039 (2022).
Black, T. MEaSUREs weekly to monthly Greenland outlet glacier terminus positions from Sentinel-1 mosaics, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/DGBOSSIULSTD (2022).
Joughin, I. & University Of Washington. MEaSUREs annual Greenland outlet glacier terminus positions from SAR mosaics, version 2. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/ESFWE11AVFKW (2021).
Cheng, D. et al. Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019. Cryosphere 15, 1663–1675 (2021).
Google Scholar
Cheng, D., Hayes, W. & Larour, E. CALFIN subseasonal Greenland glacial terminus positions, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/7FILV218JZA2 (2021).
Goliber, S. et al. TermPicks: a century of Greenland glacier terminus data for use in scientific and machine learning applications. Cryosphere 16, 3215–3233 (2022).
Google Scholar
Goliber, S. & Black, T. TermPicks: a century of Greenland glacier terminus data for use inmachine learning applications. Zenodo https://doi.org/10.5281/ZENODO.5117931 (2021).
Gardner, A., Fahnestock, M. & Scambos, T. MEaSUREs ITS_LIVE regional glacier and ice sheet surface velocities, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/6II6VW8LLWJ7 (2022).
Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).
Google Scholar
Joughin, I. MEaSUREs Greenland ice velocity annual mosaics from SAR and Landsat, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/OBXCG75U7540 (2017).
Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf. 117, F01022 (2012).
Google Scholar
Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).
Google Scholar
Cuzzone, J. K. et al. The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM). Cryosphere 13, 879–893 (2019).
Google Scholar
Cuzzone, J. K., Young, N. E., Morlighem, M., Briner, J. P. & Schlegel, N.-J. Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings. Cryosphere 16, 2355–2372 (2022).
Google Scholar
Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).
Google Scholar
Dias Dos Santos, T., Morlighem, M. & Brinkerhoff, D. A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model. Cryosphere 16, 179–195 (2022).
Google Scholar
Cuzzone, J. K., Morlighem, M., Larour, E., Schlegel, N. & Seroussi, H. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales. Geosci. Model Dev. 11, 1683–1694 (2018).
Google Scholar
Howat, I., Ohio State University & Byrd Polar Research Center. MEaSUREs Greenland Ice Mapping Project (GIMP) land ice and ocean classification mask, version 1. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/B8X58MQBFUPA (2017).
Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).
Google Scholar
Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11,051–11,061 (2017).
Google Scholar
Morlighem, M. IceBridge BedMachine Greenland, version 5. National Snow and Ice Data Center (NSIDC) https://doi.org/10.5067/GMEVBWFLWA7X (2022).
Korsgaard, N. J. et al. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data 3, 160032 (2016).
Google Scholar
Mouginot, J. & Rignot, E. Glacier catchments/basins for the Greenland Ice Sheet. Dryad https://doi.org/10.7280/D1WT11 (2019).
Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).
Google Scholar
Medley, B., Neumann, T. A., Zwally, H. J. & Smith, B. E. Forty-year simulations of firn processes over the Greenland and Antarctic ice sheets. https://tc.copernicus.org/preprints/tc-2020-266/tc-2020-266.pdf (2020).
Schwanghart, W. & Scherler, D. Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).
Google Scholar
Oceans Melting Greenland (OMG). OMG CTD Conductivity Temperature Depth (CTD) profiles. Jet Propulsion Laboratory https://doi.org/10.5067/OMGEV-CTDS1 (2020).
Fenty, I. et al. Oceans Melting Greenland: early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).
Google Scholar
Willis, J. et al. Ocean-ice interactions in Inglefield Gulf: early results from NASA’s Oceans Melting Greenland mission. Oceanography 31, 100–108 (2018).
Google Scholar