Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308, 193–199 (2011).
Google Scholar
Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).
Google Scholar
Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009).
Google Scholar
Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).
Google Scholar
Porcelli, D. & Halliday, A. N. The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).
Google Scholar
Vogt, M., Trieloff, M., Ott, U., Hopp, J. & Schwarz, W. H. Solar noble gases in an iron meteorite indicate terrestrial mantle signatures derive from Earth’s core. Commun. Earth Environ. 2, 92 (2021).
Google Scholar
Roth, A. S. et al. The primordial He budget of the Earth set by percolative core formation in planetesimals. Geochem. Perspect. Lett. 9, 26–31 (2019).
Google Scholar
Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W–He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).
Google Scholar
Deng, J. & Du, Z. Primordial helium extracted from the Earth’s core through magnesium oxide exsolution. Nat. Geosci. 16, 541–545 (2023).
Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).
Google Scholar
White, W. M. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem. Geol. 419, 10–28 (2015).
Google Scholar
Jones, T. D., Sime, N. & van Keken, P. E. Burying Earth’s primitive mantle in the slab graveyard. Geochem. Geophys. Geosyst. 22, e2020GC009396 (2021).
Google Scholar
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Google Scholar
Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).
Google Scholar
Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).
Google Scholar
Horton, F. et al. Primordial neon in high-3He/4He Baffin Island olivines. Earth Planet. Sci. Lett. 558, 116762 (2021).
Google Scholar
Biasi, J., Asimow, P. D., Horton, F. & Boyes, X. M. Eruption rates, tempo, and stratigraphy of Paleocene flood basalts on Baffin Island, Canada. Geochem. Geophys. Geosyst. 23, e221GC010172 (2022).
Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).
Google Scholar
Willhite, L. N. et al. Hot and heterogenous high-3He/4He components: new constraints from proto-iceland plume lavas from Baffin Island. Geochem. Geophys. Geosyst. 20, 5939–5967 (2019).
Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998).
Google Scholar
Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).
Google Scholar
Kent, A. J. R. et al. Mantle heterogeneity during the formation of the North Atlantic igneous province: constraints from trace element and Sr–Nd–Os–O isotope systematics of Baffin Island picrites. Geochem. Geophys. Geosyst. 5, Q11004 (2004).
Jones, T. D., Davies, D. R. & Sossi, P. A. Tungsten isotopes in mantle plumes: heads it’s positive, tails it’s negative. Earth Planet. Sci. Lett. 506, 255–267 (2019).
Google Scholar
Porcelli, D. & Ballentine, C. J. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47, 411–480 (2002).
Google Scholar
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Google Scholar
Halliday, A. N. & Canup, R. M. The accretion of planet Earth. Nat. Rev. Earth Environ. 4, 19–35 (2022).
Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).
Google Scholar
Weiss, B. P., Bai, X.-N. & Fu, R. R. History of the solar nebula from meteorite paleomagnetism. Sci. Adv. https://doi.org/10.1126/sciadv.aba5967 (2021).
Olson, P. L. & Sharp, Z. D. Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019).
Google Scholar
Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).
Google Scholar
Wang, K., Lu, X., Liu, X., Zhou, M. & Yin, K. Partitioning of noble gases (He, Ne, Ar, Kr, Xe) during Earth’s core segregation: a possible core reservoir for primordial noble gases. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2022.01.009 (2022).
Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proc. Natl Acad. Sci. USA 117, 14738–14744 (2020).
Google Scholar
de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. 142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).
Google Scholar
Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).
Google Scholar
Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).
Google Scholar
Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).
Google Scholar
Yuan, L. & Steinle-Neumann, G. The helium elemental and isotopic compositions of the Earth’s core based on ab initio simulations. J. Geophys. Res. Solid Earth 126, e2021JB023106 (2021).
Li, Y., Vočadlo, L., Ballentine, C. & Brodholt, J. P. Primitive noble gases sampled from ocean island basalts cannot be from the Earth’s core. Nat. Commun. 13, 3770 (2022).
Google Scholar
Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Perspect. Lett. 15, 15–18 (2020).
Heber, V. S. et al. Isotopic mass fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis mission. Astrophys. J. 759, 121 (2012).
Google Scholar
Faure, P. et al. Uranium and thorium partitioning in the bulk silicate Earth and the oxygen content of Earth’s core. Geochim. Cosmochim. Acta 275, 83–98 (2020).
Google Scholar
Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).
Google Scholar
Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).
Google Scholar
Ranta, E. et al. Ancient and recycled sulfur sampled by the Iceland mantle plume. Earth Planet. Sci. Lett. 584, 117452 (2022).
Google Scholar
Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).
Google Scholar
Hoffman, N. R. A. & McKenzie, D. P. The destruction of geochemical heterogeneities by differential fluid motions during mantle convection. Geophys. J. Int. 82, 163–206 (1985).
Google Scholar
Hart, S. R., Kurz, M. D. & Wang, Z. Scale length of mantle heterogeneities: constraints from helium diffusion. Earth Planet. Sci. Lett. 269, 508–517 (2008).
Google Scholar
Wang, K., Brodholt, J. & Lu, X. Helium diffusion in olivine based on first principles calculations. Geochim. Cosmochim. Acta 156, 145–153 (2015).
Google Scholar
Cherniak, D. J., Thomas, J. B. & Watson, E. B. Neon diffusion in olivine and quartz. Chem. Geol. 371, 68–82 (2014).
Google Scholar
Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature 420, 304–307 (2002).
Google Scholar
Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003).
Google Scholar
Moreira, M. A. & Kurz, M. D. In The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry (ed. Burnard, P.) 371–391 (Springer, 2013).
McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Google Scholar
Kurz, M. D. et al. Correlated helium, neon, and melt production on the super-fast spreading East Pacific Rise near 17°S. Earth Planet. Sci. Lett. 232, 125–142 (2005).
Google Scholar
Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).
Google Scholar
Patterson, D. B., Farley, K. A. & McInnes, B. I. A. Helium isotopic composition of the Tabar–Lihir–Tanga–Feni island arc, Papua New Guinea. Geochim. Cosmochim. Acta 61, 2485–2496 (1997).
Google Scholar
Scarsi, P. Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio. Geochim. Cosmochim. Acta 64, 3751–3762 (2000).
Google Scholar
Abouchami, W., Galer, S. J. G. & Koschinsky, A. Pb and Nd isotopes in NE Atlantic Fe–Mn crusts: proxies for trace metal paleosources and paleocean circulation. Geochim. Cosmochim. Acta 63, 1489–1505 (1999).
Google Scholar
Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. In Earth Processes: Reading the Isotopic Code (eds. Basu, A. & Hart, S.) 429-437 (American Geophysical Union, 1996).
Dickin, A. P. Radiogenic Isotope Geology (Cambridge Univ. Press, 2018).
Maltese, A. & Mezger, K. The Pb isotope evolution of bulk silicate Earth: constraints from its accretion and early differentiation history. Geochim. Cosmochim. Acta 271, 179–193 (2020).
Google Scholar
Horton, F., Farley, K. & Jackson, M. Helium distributions in ocean island basalt olivines revealed by X-ray computed tomography and single-grain crushing experiments. Geochim. Cosmochim. Acta 244, 467–477 (2019).
Google Scholar
Yatsevich, I. & Honda, M. Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res. Solid Earth 102, 10291–10298 (1997).
Google Scholar
McDonough, W. F. Compositional model for the Earth’s core. Treatise Geochem. 2, 547–568 (2003).
Google Scholar
Leya, I. & Wieler, R. Nucleogenic production of Ne isotopes in Earth’s crust and upper mantle induced by alpha particles from the decay of U and Th. J. Geophys. Res. Solid Earth 104, 15439–15450 (1999).
Google Scholar
Cox, S. E., Farley, K. A. & Cherniak, D. J. Direct measurement of neon production rates by (α, n) reactions in minerals. Geochim. Cosmochim. Acta 148, 130–144 (2015).
Google Scholar