Mayer, M. G. On closed shells in nuclei. II. Phys. Rev. 75, 1969–1970 (1949).
Google Scholar
Haxel, O., Jensen, J. H. D. & Suess, H. E. On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766–1766 (1949).
Google Scholar
Hergert, H. A guided tour of ab initio nuclear many-body theory. Front. Phys. 8, 379 (2020).
Google Scholar
Ahn, D. S. et al. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 123, 212501 (2019).
Google Scholar
Revel, A. et al. Extending the southern shore of the island of inversion to 28F. Phys. Rev. Lett. 124, 152502 (2020).
Google Scholar
Duer, M. et al. Observation of a correlated free four-neutron system. Nature 606, 678–682 (2022).
Google Scholar
Sakurai, H. et al. Evidence for particle stability of 31F and particle instability of 25N and 28O. Phys. Lett. B 448, 180–184 (1999).
Google Scholar
Tarasov, O. et al. Search for 28O and study of neutron-rich nuclei near the N = 20 shell closure. Phys. Lett. B 409, 64–70 (1997).
Google Scholar
Brown, B. A. & Richter, W. A. New “USD” Hamiltonians for the sd shell. Phys. Rev. C 74, 034315 (2006).
Google Scholar
Taniuchi, R. et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53–58 (2019).
Google Scholar
Jones, K. L. et al. The magic nature of 132Sn explored through the single-particle states of 133Sn. Nature 465, 454–457 (2010).
Google Scholar
Matta, A. et al. New findings on structure and production of 10He from 11Li with the (d, 3He) reaction. Phys. Rev. C 92, 041302(R) (2015).
Google Scholar
Orr, N. A. et al. New mass measurements of neutron-rich nuclei near N=20. Phys. Lett. B 258, 29–34 (1991).
Google Scholar
Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).
Google Scholar
Warburton, E. K., Becker, J. A. & Brown, B. A. Mass systematics for A=29–44 nuclei: the deformed A~32 region. Phys. Rev. C 41, 1147–1166 (1990).
Google Scholar
Gaudefroy, L. et al. Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei. Phys. Rev. Lett. 109, 202503 (2012).
Google Scholar
Doornenbal, P. et al. Low-Z shore of the “island of inversion” and the reduced neutron magicity toward 28O. Phys. Rev. C 95, 041301(R) (2017).
Google Scholar
Bagchi, S. et al. Two-neutron halo is unveiled in 29F. Phys. Rev. Lett. 124, 222504 (2020).
Google Scholar
Ozawa, A., Kobayashi, T., Suzuki, T., Yoshida, K. & Tanihata, I. New magic number, N = 16, near the neutron drip line. Phys. Rev. Lett. 84, 5493–5495 (2000).
Google Scholar
Otsuka, T. et al. Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 87, 082502 (2001).
Google Scholar
Hoffman, C. R. et al. Evidence for a doubly magic 24O. Phys. Lett. B 672, 17–21 (2009).
Google Scholar
Kanungo, R. et al. One-neutron removal measurement reveals 24O as a new doubly magic nucleus. Phys. Rev. Lett. 102, 152501 (2009).
Google Scholar
Tshoo, K. et al. N = 16 spherical shell closure in 24O. Phys. Rev. Lett. 109, 022501 (2012).
Google Scholar
Hoffman, C. R. et al. Determination of the N = 16 shell closure at the oxygen drip line. Phys. Rev. Lett. 100, 152502 (2008).
Google Scholar
Lunderberg, E. et al. Evidence for the ground-state resonance of 26O. Phys. Rev. Lett. 108, 142503 (2012).
Google Scholar
Caesar, C. et al. Beyond the neutron drip line: the unbound oxygen isotopes 25O and 26O. Phys. Rev. C 88, 034313 (2013).
Google Scholar
Kondo, Y. et al. Nucleus 26O: a barely unbound system beyond the drip line. Phys. Rev. Lett. 116, 102503 (2016).
Google Scholar
Obertelli, A. et al. MINOS: a vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. Eur. Phys. J. A 50, 8 (2014).
Google Scholar
Kobayashi, T. et al. SAMURAI spectrometer for RI beam experiments. Nucl. Instrum. Methods Phys. Res. B 317, 294–304 (2013).
Google Scholar
Boretzky, K. et al. NeuLAND: the high-resolution neutron time-of-flight spectrometer for R3B at FAIR. Nucl. Instrum. Methods Phys. Res. A 1014, 165701 (2021).
Google Scholar
Tsunoda, N. et al. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017).
Google Scholar
Tsunoda, N. et al. The impact of nuclear shape on the emergence of the neutron dripline. Nature 587, 66–71 (2020).
Google Scholar
Stroberg, S. R., Holt, J. D., Schwenk, A. & Simonis, J. Ab initio limits of atomic nuclei. Phys. Rev. Lett. 126, 022501 (2021).
Google Scholar
Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).
Google Scholar
Somà, V., Navrátil, P., Raimondi, F., Barbieri, C. & Duguet, T. Novel chiral Hamiltonian and observables in light and medium-mass nuclei. Phys. Rev. C 101, 014318 (2020).
Google Scholar
Hagen, G., Hjorth-Jensen, M., Jansen, G. R. & Papenbrock, T. Emergent properties of nuclei from ab initio coupled-cluster calculations. Phys. Scr. 91, 063006 (2016).
Google Scholar
Utsuno, Y., Otsuka, T., Mizusaki, T. & Honma, M. Varying shell gap and deformation in N ~ 20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999).
Google Scholar
Volya, A. & Zelevinsky, V. Continuum shell model. Phys. Rev. C 74, 064314 (2006).
Google Scholar
Fossez, K., Rotureau, J., Michel, N. & Nazarewicz, W. Continuum effects in neutron-drip-line oxygen isotopes. Phys. Rev. C 96, 024308 (2017).
Google Scholar
Otsuka, T., Suzuki, T., Holt, J. D., Schwenk, A. & Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010).
Google Scholar
Hagen, G., Hjorth-Jensen, M., Jansen, G. R., Machleidt, R. & Papenbrock, T. Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes. Phys. Rev. Lett. 108, 242501 (2012).
Google Scholar
Holt, J. D., Menéndez, J. & Schwenk, A. Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes. Eur. Phys. J. A 49, 39 (2013).
Google Scholar
Hebeler, K., Bogner, S. K., Furnstahl, R. J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301(R) (2011).
Google Scholar
Vernon, I., Goldstein, M. & Bower, R. G. Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5, 619–669 (2010).
Google Scholar
Vernon, I., Goldstein, M. & Bower, R. Galaxy formation: Bayesian history matching for the observable universe. Stat. Sci. 29, 81–90 (2014).
Google Scholar
Vernon, I. et al. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions. BMC Syst. Biology 12, 1 (2018).
Google Scholar
Ekström, A. et al. Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91, 051301(R) (2015).
Google Scholar
Utsuno, Y. et al. Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect. Phys. Rev. C 86, 051301(R) (2012).
Google Scholar
Caurier, E., Nowacki, F. & Poves, A. Merging of the islands of inversion at N = 20 and N = 28. Phys. Rev. C 90, 014302 (2014).
Google Scholar
Fossez, K. & Rotureau, J. Density matrix renormalization group description of the island of inversion isotopes 28–33F. Phys. Rev. C 106, 034312 (2022).
Google Scholar
Dieperink, A. E. L. & de Forest, T. Center-of-mass effects in single-nucleon knock-out reactions. Phys. Rev. C 10, 543–549 (1974).
Google Scholar
Wakasa, T., Ogata, K. & Noro, T. Proton-induced knockout reactions with polarized and unpolarized beams. Prog. Part. Nucl. Phys. 96, 32–87 (2017).
Google Scholar
Macchiavelli, A. O. et al. Structure of 29F in the rotation-aligned coupling scheme of the particle-rotor model. Phys. Lett. B 775, 160–162 (2017).
Google Scholar
Wang, M., Huang, W. J., Kondev, F. G., Audi, G. & Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45, 030003 (2021).
Google Scholar
Kubo, T. et al. BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory. Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
Google Scholar
Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).
Google Scholar
Nakamura, T. & Kondo, Y. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments. Nucl. Instrum. Methods Phys. Res. B 376, 156–161 (2016).
Google Scholar
Kondo, Y., Tomai, T. & Nakamura, T. Recent progress and developments for experimental studies with the SAMURAI spectrometer. Nucl. Instrum. Methods Phys. Res. B 463, 173–178 (2020).
Google Scholar
Grigorenko, L. V., Mukha, I. G., Scheidenberger, C. & Zhukov, M. V. Two-neutron radioactivity and four-nucleon emission from exotic nuclei. Phys. Rev. C 84, 021303(R) (2011).
Google Scholar
Lane, A. M. & Thomas, R. G. R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958).
Google Scholar
Dover, C. B., Mahaux, C. & Weidenmüller, H. A. The single-particle limit for partial widths. Nucl. Phys. A 139, 593–604 (1969).
Google Scholar
Machleidt, R. & Entem, D. R. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011).
Google Scholar
Entem, D. R. & Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003).
Google Scholar
Bogner, S., Kuo, T. T. S., Coraggio, L., Covello, A. & Itaco, N. Low momentum nucleon-nucleon potential and shell model effective interactions. Phys. Rev. C 65, 051301(R) (2002).
Google Scholar
Nogga, A., Bogner, S. K. & Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002(R) (2004).
Google Scholar
Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 852, 61–81 (2011).
Google Scholar
Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa–Kuo method. Nucl. Phys. A 864, 91–112 (2011).
Google Scholar
Tsunoda, N., Takayanagi, K., Hjorth-Jensen, M. & Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 89, 024313 (2014).
Google Scholar
Hjorth-Jensen, M., Kuo, T. T. & Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 261, 125–270 (1995).
Google Scholar
Fujita, J. & Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys. 17, 360–365 (1957).
Google Scholar
Kohno, M. Nuclear and neutron matter G-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions. Phys. Rev. C 88, 064005 (2013) ; erratum 96, 059903 (2017).
Google Scholar
van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932–2941 (1994).
Google Scholar
Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).
Google Scholar
Jiang, W. G. et al. Accurate bulk properties of nuclei from A = 2 to ∞ from potentials with Δ isobars. Phys. Rev. C 102, 054301 (2020).
Google Scholar
Coester, F. Bound states of a many-particle system. Nucl. Phys. 7, 421–424 (1958).
Google Scholar
Coester, F. & Kümmel, H. Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477–485 (1960).
Google Scholar
Kümmel, H., Lührmann, K. H. & Zabolitzky, J. G. Many-fermion theory in expS- (or coupled cluster) form. Phys. Rep. 36, 1–63 (1978).
Google Scholar
Mihaila, B. & Heisenberg, J. H. Microscopic calculation of the inclusive electron scattering structure function in 16O. Phys. Rev. Lett. 84, 1403–1406 (2000).
Google Scholar
Dean, D. J. & Hjorth-Jensen, M. Coupled-cluster approach to nuclear physics. Phys. Rev. C 69, 054320 (2004).
Google Scholar
Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).
Google Scholar
Hagen, G., Papenbrock, T., Hjorth-Jensen, M. & Dean, D. J. Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 77, 096302 (2014).
Google Scholar
Noga, J., Bartlett, R. J. & Urban, M. Towards a full CCSDT model for electron correlation. CCSDT-n models. Chem. Phys. Lett. 134, 126–132 (1987).
Google Scholar
Watts, J. D. & Bartlett, R. J. Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(\(\widetilde{{\rm{T}}}\)) methods. Chem. Phys. Lett. 258, 581–588 (1996).
Google Scholar
Gour, J. R., Piecuch, P., Hjorth-Jensen, M., Włoch, M. & Dean, D. J. Coupled-cluster calculations for valence systems around 16O. Phys. Rev. C 74, 024310 (2006).
Google Scholar
Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).
Google Scholar
Frame, D. et al. Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121, 032501 (2018).
Google Scholar
König, S., Ekström, A., Hebeler, K., Lee, D. & Schwenk, A. Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification. Phys. Lett. B 810, 135814 (2020).
Google Scholar
Ekström, A. & Hagen, G. Global sensitivity analysis of bulk properties of an atomic nucleus. Phys. Rev. Lett. 123, 252501 (2019).
Google Scholar
Bastos, L. S. & O’Hagan, A. Diagnostics for Gaussian process emulators. Technometrics 51, 425–438 (2009).
Google Scholar
Wesolowski, S., Klco, N., Furnstahl, R. J., Phillips, D. R. & Thapaliya, A. Bayesian parameter estimation for effective field theories. J. Phys. G 43, 074001 (2016).
Google Scholar
Melendez, J. A., Wesolowski, S. & Furnstahl, R. J. Bayesian truncation errors in chiral effective field theory: nucleon-nucleon observables. Phys. Rev. C 96, 024003 (2017).
Google Scholar
Wesolowski, S., Furnstahl, R. J., Melendez, J. A. & Phillips, D. R. Exploring Bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts. J. Phys. G 46, 045102 (2019).
Google Scholar
Melendez, J. A., Furnstahl, R. J., Phillips, D. R., Pratola, M. T. & Wesolowski, S. Quantifying correlated truncation errors in effective field theory. Phys. Rev. C 100, 044001 (2019).
Google Scholar
Ekström, A., Hagen, G., Morris, T. D., Papenbrock, T. & Schwartz, P. D. Δ isobars and nuclear saturation. Phys. Rev. C 97, 024332 (2018).
Google Scholar
Raftery, A. E., Givens, G. H. & Zeh, J. E. Inference from a deterministic population dynamics model for bowhead whales. J. Am. Stat. Assoc. 90, 402–416 (1995).
Google Scholar
Vernon, I., Goldstein, M. & Bower, R. G. Rejoinder—Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5, 697–708 (2010).
Google Scholar
Andrianakis, I. et al. Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on HIV in Uganda. PLoS Comput. Biol. 11, e1003968 (2015).
Google Scholar
Williamson, D. et al. History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. Clim. Dyn. 41, 1703–1729 (2013).
Google Scholar
Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).
Google Scholar
Pukelsheim, F. The three sigma rule. Am. Stat. 48, 88–91 (1994).
Google Scholar
Siemens, D. et al. Reconciling threshold and subthreshold expansions for pion–nucleon scattering. Phys. Lett. B 770, 27–34 (2017).
Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Google Scholar
Jacob, G. & Maris, T. A. J. Quasi-free scattering and nuclear structure. Rev. Mod. Phys. 38, 121–142 (1966).
Google Scholar
Jacob, G. & Maris, T. A. J. Quasi-free scattering and nuclear structure. II. Rev. Mod. Phys. 45, 6–21 (1973).
Google Scholar
Perey, F. & Buck, B. A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32, 353–380 (1962).
Google Scholar
Møller, C. General Properties of the Characteristic Matrix in the Theory of Elementary Particles. In Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske meddelelser Vol. 23 (Munksgaard, 1945).
Franey, M. A. & Love, W. G. Nucleon-nucleon t-matrix interaction for scattering at intermediate energies. Phys. Rev. C 31, 488–498 (1985).
Google Scholar
Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. 1 (Benjamin, 1969).
Cooper, E. D., Hama, S., Clark, B. C. & Mercer, R. L. Global Dirac phenomenology for proton-nucleus elastic scattering. Phys. Rev. C 47, 297–311 (1993).
Google Scholar
Amos, K., Dortmans, P. J., von Geramb, H. V., Karataglidis, S. & Raynal, J. Advances in Nuclear Physics (eds Negele, J. W. & Vogt, E.) 276–536 (Plenum, 2000).