Strange IndiaStrange India


  • Mayer, M. G. On closed shells in nuclei. II. Phys. Rev. 75, 1969–1970 (1949).

    Article 
    ADS 

    Google Scholar 

  • Haxel, O., Jensen, J. H. D. & Suess, H. E. On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766–1766 (1949).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hergert, H. A guided tour of ab initio nuclear many-body theory. Front. Phys. 8, 379 (2020).

    Article 

    Google Scholar 

  • Ahn, D. S. et al. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 123, 212501 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Revel, A. et al. Extending the southern shore of the island of inversion to 28F. Phys. Rev. Lett. 124, 152502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Duer, M. et al. Observation of a correlated free four-neutron system. Nature 606, 678–682 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakurai, H. et al. Evidence for particle stability of 31F and particle instability of 25N and 28O. Phys. Lett. B 448, 180–184 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tarasov, O. et al. Search for 28O and study of neutron-rich nuclei near the N = 20 shell closure. Phys. Lett. B 409, 64–70 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brown, B. A. & Richter, W. A. New “USD” Hamiltonians for the sd shell. Phys. Rev. C 74, 034315 (2006).

    Article 
    ADS 

    Google Scholar 

  • Taniuchi, R. et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53–58 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, K. L. et al. The magic nature of 132Sn explored through the single-particle states of 133Sn. Nature 465, 454–457 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matta, A. et al. New findings on structure and production of 10He from 11Li with the (d, 3He) reaction. Phys. Rev. C 92, 041302(R) (2015).

    Article 
    ADS 

    Google Scholar 

  • Orr, N. A. et al. New mass measurements of neutron-rich nuclei near N=20. Phys. Lett. B 258, 29–34 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Warburton, E. K., Becker, J. A. & Brown, B. A. Mass systematics for A=29–44 nuclei: the deformed A~32 region. Phys. Rev. C 41, 1147–1166 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gaudefroy, L. et al. Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei. Phys. Rev. Lett. 109, 202503 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Doornenbal, P. et al. Low-Z shore of the “island of inversion” and the reduced neutron magicity toward 28O. Phys. Rev. C 95, 041301(R) (2017).

    Article 
    ADS 

    Google Scholar 

  • Bagchi, S. et al. Two-neutron halo is unveiled in 29F. Phys. Rev. Lett. 124, 222504 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ozawa, A., Kobayashi, T., Suzuki, T., Yoshida, K. & Tanihata, I. New magic number, N = 16, near the neutron drip line. Phys. Rev. Lett. 84, 5493–5495 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Otsuka, T. et al. Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 87, 082502 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffman, C. R. et al. Evidence for a doubly magic 24O. Phys. Lett. B 672, 17–21 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kanungo, R. et al. One-neutron removal measurement reveals 24O as a new doubly magic nucleus. Phys. Rev. Lett. 102, 152501 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tshoo, K. et al. N = 16 spherical shell closure in 24O. Phys. Rev. Lett. 109, 022501 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffman, C. R. et al. Determination of the N = 16 shell closure at the oxygen drip line. Phys. Rev. Lett. 100, 152502 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lunderberg, E. et al. Evidence for the ground-state resonance of 26O. Phys. Rev. Lett. 108, 142503 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Caesar, C. et al. Beyond the neutron drip line: the unbound oxygen isotopes 25O and 26O. Phys. Rev. C 88, 034313 (2013).

    Article 
    ADS 

    Google Scholar 

  • Kondo, Y. et al. Nucleus 26O: a barely unbound system beyond the drip line. Phys. Rev. Lett. 116, 102503 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Obertelli, A. et al. MINOS: a vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. Eur. Phys. J. A 50, 8 (2014).

    Article 

    Google Scholar 

  • Kobayashi, T. et al. SAMURAI spectrometer for RI beam experiments. Nucl. Instrum. Methods Phys. Res. B 317, 294–304 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Boretzky, K. et al. NeuLAND: the high-resolution neutron time-of-flight spectrometer for R3B at FAIR. Nucl. Instrum. Methods Phys. Res. A 1014, 165701 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tsunoda, N. et al. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017).

    Article 
    ADS 

    Google Scholar 

  • Tsunoda, N. et al. The impact of nuclear shape on the emergence of the neutron dripline. Nature 587, 66–71 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stroberg, S. R., Holt, J. D., Schwenk, A. & Simonis, J. Ab initio limits of atomic nuclei. Phys. Rev. Lett. 126, 022501 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Somà, V., Navrátil, P., Raimondi, F., Barbieri, C. & Duguet, T. Novel chiral Hamiltonian and observables in light and medium-mass nuclei. Phys. Rev. C 101, 014318 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hagen, G., Hjorth-Jensen, M., Jansen, G. R. & Papenbrock, T. Emergent properties of nuclei from ab initio coupled-cluster calculations. Phys. Scr. 91, 063006 (2016).

    Article 
    ADS 

    Google Scholar 

  • Utsuno, Y., Otsuka, T., Mizusaki, T. & Honma, M. Varying shell gap and deformation in N ~ 20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999).

    Article 
    ADS 

    Google Scholar 

  • Volya, A. & Zelevinsky, V. Continuum shell model. Phys. Rev. C 74, 064314 (2006).

    Article 
    ADS 

    Google Scholar 

  • Fossez, K., Rotureau, J., Michel, N. & Nazarewicz, W. Continuum effects in neutron-drip-line oxygen isotopes. Phys. Rev. C 96, 024308 (2017).

    Article 
    ADS 

    Google Scholar 

  • Otsuka, T., Suzuki, T., Holt, J. D., Schwenk, A. & Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Hagen, G., Hjorth-Jensen, M., Jansen, G. R., Machleidt, R. & Papenbrock, T. Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes. Phys. Rev. Lett. 108, 242501 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Holt, J. D., Menéndez, J. & Schwenk, A. Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes. Eur. Phys. J. A 49, 39 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hebeler, K., Bogner, S. K., Furnstahl, R. J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301(R) (2011).

    Article 
    ADS 

    Google Scholar 

  • Vernon, I., Goldstein, M. & Bower, R. G. Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5, 619–669 (2010).

    MathSciNet 
    MATH 

    Google Scholar 

  • Vernon, I., Goldstein, M. & Bower, R. Galaxy formation: Bayesian history matching for the observable universe. Stat. Sci. 29, 81–90 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Vernon, I. et al. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions. BMC Syst. Biology 12, 1 (2018).

    Article 

    Google Scholar 

  • Ekström, A. et al. Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91, 051301(R) (2015).

    Article 
    ADS 

    Google Scholar 

  • Utsuno, Y. et al. Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect. Phys. Rev. C 86, 051301(R) (2012).

    Article 
    ADS 

    Google Scholar 

  • Caurier, E., Nowacki, F. & Poves, A. Merging of the islands of inversion at N = 20 and N = 28. Phys. Rev. C 90, 014302 (2014).

    Article 
    ADS 

    Google Scholar 

  • Fossez, K. & Rotureau, J. Density matrix renormalization group description of the island of inversion isotopes 28–33F. Phys. Rev. C 106, 034312 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dieperink, A. E. L. & de Forest, T. Center-of-mass effects in single-nucleon knock-out reactions. Phys. Rev. C 10, 543–549 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wakasa, T., Ogata, K. & Noro, T. Proton-induced knockout reactions with polarized and unpolarized beams. Prog. Part. Nucl. Phys. 96, 32–87 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Macchiavelli, A. O. et al. Structure of 29F in the rotation-aligned coupling scheme of the particle-rotor model. Phys. Lett. B 775, 160–162 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, M., Huang, W. J., Kondev, F. G., Audi, G. & Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45, 030003 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kubo, T. et al. BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory. Prog. Theor. Exp. Phys. 2012, 03C003 (2012).

    Article 

    Google Scholar 

  • Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nakamura, T. & Kondo, Y. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments. Nucl. Instrum. Methods Phys. Res. B 376, 156–161 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kondo, Y., Tomai, T. & Nakamura, T. Recent progress and developments for experimental studies with the SAMURAI spectrometer. Nucl. Instrum. Methods Phys. Res. B 463, 173–178 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grigorenko, L. V., Mukha, I. G., Scheidenberger, C. & Zhukov, M. V. Two-neutron radioactivity and four-nucleon emission from exotic nuclei. Phys. Rev. C 84, 021303(R) (2011).

    Article 
    ADS 

    Google Scholar 

  • Lane, A. M. & Thomas, R. G. R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Dover, C. B., Mahaux, C. & Weidenmüller, H. A. The single-particle limit for partial widths. Nucl. Phys. A 139, 593–604 (1969).

    Article 
    ADS 

    Google Scholar 

  • Machleidt, R. & Entem, D. R. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Entem, D. R. & Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003).

    Article 
    ADS 

    Google Scholar 

  • Bogner, S., Kuo, T. T. S., Coraggio, L., Covello, A. & Itaco, N. Low momentum nucleon-nucleon potential and shell model effective interactions. Phys. Rev. C 65, 051301(R) (2002).

    Article 
    ADS 

    Google Scholar 

  • Nogga, A., Bogner, S. K. & Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002(R) (2004).

    Article 
    ADS 

    Google Scholar 

  • Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 852, 61–81 (2011).

    Article 
    ADS 

    Google Scholar 

  • Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa–Kuo method. Nucl. Phys. A 864, 91–112 (2011).

    Article 
    ADS 

    Google Scholar 

  • Tsunoda, N., Takayanagi, K., Hjorth-Jensen, M. & Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 89, 024313 (2014).

    Article 
    ADS 

    Google Scholar 

  • Hjorth-Jensen, M., Kuo, T. T. & Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 261, 125–270 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fujita, J. & Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys. 17, 360–365 (1957).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Kohno, M. Nuclear and neutron matter G-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions. Phys. Rev. C 88, 064005 (2013) ; erratum 96, 059903 (2017).

    Article 
    ADS 

    Google Scholar 

  • van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932–2941 (1994).

    Article 
    ADS 

    Google Scholar 

  • Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiang, W. G. et al. Accurate bulk properties of nuclei from A = 2 to from potentials with Δ isobars. Phys. Rev. C 102, 054301 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Coester, F. Bound states of a many-particle system. Nucl. Phys. 7, 421–424 (1958).

    Article 

    Google Scholar 

  • Coester, F. & Kümmel, H. Short-range correlations in nuclear wave functions. Nucl. Phys. 17, 477–485 (1960).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Kümmel, H., Lührmann, K. H. & Zabolitzky, J. G. Many-fermion theory in expS- (or coupled cluster) form. Phys. Rep. 36, 1–63 (1978).

    Article 
    ADS 

    Google Scholar 

  • Mihaila, B. & Heisenberg, J. H. Microscopic calculation of the inclusive electron scattering structure function in 16O. Phys. Rev. Lett. 84, 1403–1406 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dean, D. J. & Hjorth-Jensen, M. Coupled-cluster approach to nuclear physics. Phys. Rev. C 69, 054320 (2004).

    Article 
    ADS 

    Google Scholar 

  • Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hagen, G., Papenbrock, T., Hjorth-Jensen, M. & Dean, D. J. Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 77, 096302 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Noga, J., Bartlett, R. J. & Urban, M. Towards a full CCSDT model for electron correlation. CCSDT-n models. Chem. Phys. Lett. 134, 126–132 (1987).

    Article 
    ADS 

    Google Scholar 

  • Watts, J. D. & Bartlett, R. J. Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: the EOM-CCSDT-3 and EOM-CCSD(\(\widetilde{{\rm{T}}}\)) methods. Chem. Phys. Lett. 258, 581–588 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gour, J. R., Piecuch, P., Hjorth-Jensen, M., Włoch, M. & Dean, D. J. Coupled-cluster calculations for valence systems around 16O. Phys. Rev. C 74, 024310 (2006).

    Article 
    ADS 

    Google Scholar 

  • Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frame, D. et al. Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121, 032501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • König, S., Ekström, A., Hebeler, K., Lee, D. & Schwenk, A. Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification. Phys. Lett. B 810, 135814 (2020).

    Article 

    Google Scholar 

  • Ekström, A. & Hagen, G. Global sensitivity analysis of bulk properties of an atomic nucleus. Phys. Rev. Lett. 123, 252501 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bastos, L. S. & O’Hagan, A. Diagnostics for Gaussian process emulators. Technometrics 51, 425–438 (2009).

    Article 
    MathSciNet 

    Google Scholar 

  • Wesolowski, S., Klco, N., Furnstahl, R. J., Phillips, D. R. & Thapaliya, A. Bayesian parameter estimation for effective field theories. J. Phys. G 43, 074001 (2016).

    Article 
    ADS 

    Google Scholar 

  • Melendez, J. A., Wesolowski, S. & Furnstahl, R. J. Bayesian truncation errors in chiral effective field theory: nucleon-nucleon observables. Phys. Rev. C 96, 024003 (2017).

    Article 
    ADS 

    Google Scholar 

  • Wesolowski, S., Furnstahl, R. J., Melendez, J. A. & Phillips, D. R. Exploring Bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts. J. Phys. G 46, 045102 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Melendez, J. A., Furnstahl, R. J., Phillips, D. R., Pratola, M. T. & Wesolowski, S. Quantifying correlated truncation errors in effective field theory. Phys. Rev. C 100, 044001 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ekström, A., Hagen, G., Morris, T. D., Papenbrock, T. & Schwartz, P. D. Δ isobars and nuclear saturation. Phys. Rev. C 97, 024332 (2018).

    Article 
    ADS 

    Google Scholar 

  • Raftery, A. E., Givens, G. H. & Zeh, J. E. Inference from a deterministic population dynamics model for bowhead whales. J. Am. Stat. Assoc. 90, 402–416 (1995).

    Article 
    MATH 

    Google Scholar 

  • Vernon, I., Goldstein, M. & Bower, R. G. Rejoinder—Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5, 697–708 (2010).

    MathSciNet 
    MATH 

    Google Scholar 

  • Andrianakis, I. et al. Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on HIV in Uganda. PLoS Comput. Biol. 11, e1003968 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williamson, D. et al. History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. Clim. Dyn. 41, 1703–1729 (2013).

    Article 

    Google Scholar 

  • Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pukelsheim, F. The three sigma rule. Am. Stat. 48, 88–91 (1994).

    MathSciNet 

    Google Scholar 

  • Siemens, D. et al. Reconciling threshold and subthreshold expansions for pion–nucleon scattering. Phys. Lett. B 770, 27–34 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article 
    ADS 

    Google Scholar 

  • Jacob, G. & Maris, T. A. J. Quasi-free scattering and nuclear structure. Rev. Mod. Phys. 38, 121–142 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jacob, G. & Maris, T. A. J. Quasi-free scattering and nuclear structure. II. Rev. Mod. Phys. 45, 6–21 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perey, F. & Buck, B. A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32, 353–380 (1962).

    Article 
    MATH 

    Google Scholar 

  • Møller, C. General Properties of the Characteristic Matrix in the Theory of Elementary Particles. In Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske meddelelser Vol. 23 (Munksgaard, 1945).

  • Franey, M. A. & Love, W. G. Nucleon-nucleon t-matrix interaction for scattering at intermediate energies. Phys. Rev. C 31, 488–498 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. 1 (Benjamin, 1969).

  • Cooper, E. D., Hama, S., Clark, B. C. & Mercer, R. L. Global Dirac phenomenology for proton-nucleus elastic scattering. Phys. Rev. C 47, 297–311 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Amos, K., Dortmans, P. J., von Geramb, H. V., Karataglidis, S. & Raynal, J. Advances in Nuclear Physics (eds Negele, J. W. & Vogt, E.) 276–536 (Plenum, 2000).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *