Strange IndiaStrange India


  • 1.

    Spencer, A. F. & Lowenstein, J. M. The supply of precursors for the synthesis of fatty acids. J. Biol. Chem. 237, 3640–3648 (1962).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. Endocrinol. Metabol. 276, E1–E18 (1999).

    CAS 

    Google Scholar 

  • 3.

    Sul, H. S. & Smith, S. in Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 155–190 (Elsevier, 2008).

  • 4.

    Fang, M. & Lowenstein, J. M. Citrate and the conversion of carbohydrate into fat. The regulation of fatty acid synthesis by rat liver extracts. Biochem. J. 105, 803–811 (1967).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Shrago, E., Spennetta, T. & Gordon, E. Fatty acid synthesis in human adipose tissue. J. Biol. Chem. 244, 2761–2766 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Thevenon, J. et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am. J. Hum. Genet. 95, 113–120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Hardies, K. et al. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain 138, 3238–3250 (2015).

    PubMed 

    Google Scholar 

  • 8.

    Klotz, J., Porter, B. E., Colas, C., Schlessinger, A. & Pajor, A. M. Mutations in the Na+/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Mol. Med. 22, 310–321 (2016).

    CAS 
    PubMed Central 

    Google Scholar 

  • 9.

    Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Inoue, K., Zhuang, L., Maddox, D. M., Smith, S. B. & Ganapathy, V. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J. Biol. Chem. 277, 39469–39476 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Inoue, K. et al. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem. J. 378, 949–957 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Gopal, E. et al. Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G402–G408 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Li, L. et al. SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver. Mol. Pharmacol. 87, 674–682 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Brachs, S. et al. Inhibition of citrate cotransporter Slc13a5/mINDY by RNAi improves hepatic insulin sensitivity and prevents diet-induced non-alcoholic fatty liver disease in mice. Mol. Metab. 5, 1072–1082 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Birkenfeld, A. L. et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab. 14, 184–195 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Rogina, B., Reenan, R. A., Nilsen, S. P. & Helfand, S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290, 2137–2140 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Wang, P. Y. et al. Long-lived Indy and calorie restriction interact to extend life span. Proc. Natl Acad. Sci. USA 106, 9262–9267 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Fei, Y. J. et al. Relevance of NAC-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Biochem. J. 379, 191–198 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Bergeron, M. J., Clémençon, B., Hediger, M. A. & Markovich, D. SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Mol. Aspects Med. 34, 299–312 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Pajor, A. M. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch. 466, 119–130 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Joshi, A. D. & Pajor, A. M. Role of conserved prolines in the structure and function of the Na+/dicarboxylate cotransporter 1, NaDC1. Biochemistry 45, 4231–4239 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Willmes, D. M. et al. The longevity gene INDY (I’m not dead yet) in metabolic control: potential as pharmacological target. Pharmacol. Ther. 185, 1–11 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Huard, K. et al. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5). Sci. Rep. 5, 17391 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Huard, K. et al. Optimization of a dicarboxylic series for in vivo inhibition of citrate transport by the solute carrier 13 (SLC13) family. J. Med. Chem. 59, 1165–1175 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Pajor, A. M. et al. Molecular basis for inhibition of the Na+/citrate transporter NaCT (SLC13A5) by dicarboxylate inhibitors. Mol. Pharmacol. 90, 755–765 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Rives, M. L., Shaw, M., Zhu, B., Hinke, S. A. & Wickenden, A. D. State-dependent allosteric inhibition of the human SLC13A5 citrate transporter by hydroxysuccinic acids, PF-06649298 and PF-06761281. Mol. Pharmacol. 90, 766–774 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Mancusso, R., Gregorio, G. G., Liu, Q. & Wang, D. N. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491, 622–626 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Nie, R., Stark, S., Symersky, J., Kaplan, R. S. & Lu, M. Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant. Nat. Commun. 8, 15009 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Sauer, D. B. et al. Structural basis for the reaction cycle of DASS dicarboxylate transporters. eLife 9, e61350 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Schlessinger, A., Sun, N. N., Colas, C. & Pajor, A. M. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3. J. Biol. Chem. 289, 16998–17008 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Colas, C., Pajor, A. M. & Schlessinger, A. Structure-based identification of inhibitors for the SLC13 family of Na+/dicarboxylate cotransporters. Biochemistry 54, 4900–4908 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Inoue, K., Zhuang, L., Maddox, D. M., Smith, S. B. & Ganapathy, V. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem. J. 374, 21–26 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Gopal, E. et al. Species-specific influence of lithium on the activity of SLC13A5 (NaCT): lithium-induced activation is specific for the transporter in primates. J. Pharmacol. Exp. Ther. 353, 17–26 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Mancusso, R., Karpowich, N. K., Czyzewski, B. K. & Wang, D. N. Simple screening method for improving membrane protein thermostability. Methods 55, 324–329 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Auer, M. et al. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40, 6628–6635 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Mulligan, C. et al. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat. Struct. Mol. Biol. 23, 256–263 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Garaeva, A. A. & Slotboom, D. J. Elevator-type mechanisms of membrane transport. Biochem. Soc. Trans. 48, 1227–1241 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Khamaysi, A., Aharon, S., Eini-Rider, H. & Ohana, E. A dynamic anchor domain in slc13 transporters controls metabolite transport. J. Biol. Chem. 295, 8155–8163 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Makwana, K. M. & Mahalakshmi, R. Implications of aromatic–aromatic interactions: from protein structures to peptide models. Protein Sci. 24, 1920–1933 (2015).

    Google Scholar 

  • 42.

    Nayal, M. & Di Cera, E. Valence screening of water in protein crystals reveals potential Na+ binding sites. J. Mol. Biol. 256, 228–234 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Pajor, A. M. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter. J. Biol. Chem. 276, 29961–29968 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Dewulf, J. P. et al. SLC13A3 variants cause acute reversible leukoencephalopathy and α-ketoglutarate accumulation. Ann. Neurol. 85, 385–395 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Law, C. J., Yang, Q., Soudant, C., Maloney, P. C. & Wang, D. N. Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT. Biochemistry 46, 12190–12197 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Law, C. J., Enkavi, G., Wang, D. N. & Tajkhorshid, E. Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT. Biophys. J. 97, 1346–1353 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Slotboom, D. J., Duurkens, R. H., Olieman, K. & Erkens, G. B. Static light scattering to characterize membrane proteins in detergent solution. Methods 46, 73–82 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Waight, A. B., Love, J. & Wang, D. N. Structure and mechanism of a pentameric formate channel. Nat. Struct. Mol. Biol. 17, 31–37 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Kendrick, B. S., Kerwin, B. A., Chang, B. S. & Philo, J. S. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein–protein or protein–ligand association states. Anal. Biochem. 299, 136–146 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Huynh, K. W. et al. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat. Commun. 9, 900 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Rice, W. J. et al. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol. 204, 38–44 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 

    Google Scholar 

  • 59.

    Dang, S. et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552, 426–429 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    PubMed 

    Google Scholar 

  • 63.

    Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861–882 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 111, 11709–11714 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 

    Google Scholar 

  • 67.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed 

    Google Scholar 

  • 68.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 

    Google Scholar 

  • 69.

    DeLano, W. L. The PyMOL User’s Manual (DeLano Scientific, 2002).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *