Strange India All Strange Things About India and world


  • 1.

    Barka, E. A. et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).

    Article 

    Google Scholar 

  • 2.

    Cuthbertson, L. & Nodwell, J. R. The TetR family of regulators. Microbiol. Mol. Biol. Rev. 77, 440–475 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Corre, C., Song, L., O’Rourke, S., Chater, K. F. & Challis, G. L. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl Acad. Sci. USA 105, 17510–17515 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Flärdh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49 (2009).

    Article 

    Google Scholar 

  • 5.

    van der Heul, H. U., Bilyk, B. L., McDowall, K. J., Seipke, R. F. & van Wezel, G. P. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35, 575–604 (2018).

    Article 

    Google Scholar 

  • 6.

    Willey, J. M. & Gaskell, A. A. Morphogenetic signaling molecules of the streptomycetes. Chem. Rev. 111, 174–187 (2011).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Horinouchi, S. & Beppu, T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc. Jpn. Acad. Ser. B 83, 277–295 (2007).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kitani, S. et al. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc. Natl Acad. Sci. USA 108, 16410–16415 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Arakawa, K., Tsuda, N., Taniguchi, A. & Kinashi, H. The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. ChemBioChem 13, 1447–1457 (2012).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

    ADS 
    Article 

    Google Scholar 

  • 11.

    O’Rourke, S. et al. Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol. Microbiol. 71, 763–778 (2009).

    Article 

    Google Scholar 

  • 12.

    Hinrichs, W. et al. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418–420 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Orth, P., Schnappinger, D., Hillen, W., Saenger, W. & Hinrichs, W. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7, 215–219 (2000).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Le, T. B. K., Schumacher, M. A., Lawson, D. M., Brennan, R. G. & Buttner, M. J. The crystal structure of the TetR family transcriptional repressor SimR bound to DNA and the role of a flexible N-terminal extension in minor groove binding. Nucleic Acids Res. 39, 9433–9447 (2011).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Natsume, R., Ohnishi, Y., Senda, T. & Horinouchi, S. Crystal structure of a γ-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J. Mol. Biol. 336, 409–419 (2004).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Bhukya, H., Bhujbalrao, R., Bitra, A. & Anand, R. Structural and functional basis of transcriptional regulation by TetR family protein CprB from S. coelicolor A3(2). Nucleic Acids Res. 42, 10122–10133 (2014).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Takano, E. et al. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol. Microbiol. 56, 465–479 (2005).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Schumacher, M. A. et al. Structural mechanisms of QacR induction and multidrug recognition. Science 294, 2158–2163 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Schumacher, M. A. et al. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBO J. 21, 1210–1218 (2002).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ramos, J. L. et al. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356 (2005).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Kapoor, I., Olivares, P. & Nair, S. K. Biochemical basis for the regulation of biosynthesis of antiparasitics by bacterial hormones. eLife 9, e57824 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *