Strange India All Strange Things About India and world


  • 1.

    Sick, I. Precise root-mean-square radius of 4He. Phys. Rev. C 77, 041302 (2008).

    ADS 

    Google Scholar 

  • 2.

    Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Antognini, A. et al. Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Pohl, R. et al. Muonic hydrogen and the proton radius puzzle. Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Carlson, C. E. The proton radius puzzle. Prog. Part. Nucl. Phys. 82, 59–77 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Pohl, R. et al. Laser spectroscopy of muonic deuterium. Science 353, 669–673 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • 8.

    Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Xiong, W. et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147–150 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Sick, I. Elastic electron scattering from light nuclei. Prog. Part. Nucl. Phys. 47, 245–318 (2001).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Leidemann, W. & Orlandini, G. Modern ab initio approaches and applications in few-nucleon physics with A ≥ 4. Prog. Part. Nucl. Phys. 68, 158–214 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Fleurbaey, H. et al. New measurement of the 1S–3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Shiner, D., Dixson, R. & Vedantham, V. Three-nucleon charge radius: a precise laser determination using 3He. Phys. Rev. Lett. 74, 3553–3556 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Cancio Pastor, P. et al. Frequency metrology of helium around 1083 nm and determination of the nuclear charge radius. Phys. Rev. Lett. 108, 143001 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Lu, Z. T. et al. Laser probing of neutron-rich nuclei in light atoms. Rev. Mod. Phys. 85, 1383–1400 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Rengelink, R. J. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nat. Phys. 14, 1132–1137 (2018).

    CAS 

    Google Scholar 

  • 17.

    Zheng, X. et al. Measurement of the frequency of the 23S–23P transition of 4He. Phys. Rev. Lett. 119, 263002 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Huang, Y. J. et al. Precision laser spectroscopy of the 21S0–31D2 two-photon transition in 3He. Phys. Rev. A 101, 062507 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Patkóš, V., Yerokhin, V. A. & Pachucki, K. Nonradiative α7m QED effects in Lamb shift of helium triplet states. Phys. Rev. A 101, 062516 (2020).

    ADS 

    Google Scholar 

  • 20.

    Herrmann, M. et al. Feasibility of coherent xuv spectroscopy on the 1S–2S transition in singly ionized helium. Phys. Rev. A 79, 052505 (2009).

    ADS 

    Google Scholar 

  • 21.

    Krauth, J. J. et al. Paving the way for fundamental physics tests with singly-ionized helium. Proc. Sci. 353, 049 (2019).

    Google Scholar 

  • 22.

    Lamb, W. E. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

    ADS 
    CAS 

    Google Scholar 

  • 23.

    Diepold, M. et al. Theory of the Lamb shift and fine structure in muonic 4He ions and the muonic 3He–4He isotope shift. Ann. Phys. 396, 220–244 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Faustov, R. N. et al. Radiative nonrecoil nuclear finite size corrections of order α()5 to the Lamb shift in light muonic atoms. Phys. Lett. B 775, 79–83 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Sick, I. Zemach moments of 3He and 4He. Phys. Rev. C 90, 064002 (2014).

    ADS 

    Google Scholar 

  • 26.

    Ji, C. et al. Ab initio calculation of nuclear-structure corrections in muonic atoms. J. Phys. G 45, 093002 (2018).

    ADS 

    Google Scholar 

  • 27.

    Pachucki, K., Patkóš, V. & Yerokhin, V. A. Three-photon-exchange nuclear structure correction in hydrogenic systems. Phys. Rev. A 97, 062511 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Dittus, F. B. Experimentelle Untersuchung über Bildung und Zerfall myonischer Heliumionen im metastabilen 2S-Zustand. PhD thesis, ETH Zurich (1985).

  • 29.

    Ludhova, L. et al. Muonic hydrogen cascade time and lifetime of the short-lived 2S state. Phys. Rev. A 75, 040501 (2007).

    ADS 

    Google Scholar 

  • 30.

    von Arb, H. P. et al. Measurement of the lifetime and quenching rate of metastable 2S muonic helium ions. Phys. Lett. B 136, 232–236 (1984).

    ADS 

    Google Scholar 

  • 31.

    Diepold, M. et al. Improved X-ray detection and particle identification with avalanche photodiodes. Rev. Sci. Instrum. 86, 053102 (2015).

    ADS 

    Google Scholar 

  • 32.

    Amaro, P. et al. Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3. Phys. Rev. A 92, 022514 (2015).

    ADS 

    Google Scholar 

  • 33.

    Ji, C. et al. Nuclear polarization corrections to the μ4He+ Lamb shift. Phys. Rev. Lett. 111, 143402 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Carlson, C. E., Gorchtein, M. & Vanderhaeghen, M. Nuclear-structure contribution to the Lamb shift in muonic deuterium. Phys. Rev. A 89, 022504 (2014).

    ADS 

    Google Scholar 

  • 35.

    Nevo Dinur, N. et al. Zemach moments and radii of 2,3H and 3,4He. Phys. Rev. C 99, 034004 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Ji, C. et al. Nuclear polarization effects in muonic atoms. Few Body Syst. 55, 917–921 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Bacca, S. Electromagnetic reactions and few-nucleon dynamics. EPJ Web Conf. 66, 01002 (2014).

    Google Scholar 

  • 38.

    Carboni, G. et al. Precise measurement of the 2S1/2–2P3/2 splitting in the (μ−4He)+ muonic ion. Nucl. Phys. A 278, 381–386 (1977).

    ADS 

    Google Scholar 

  • 39.

    Carboni, G. et al. Measurement of the 2S1/2–2P1/2 splitting in the (μ−4He)+ muonic ion. Phys. Lett. B 73, 229–231 (1978).

    ADS 

    Google Scholar 

  • 40.

    Hauser, P. et al. Search for the 2S–2P energy difference in muonic 4He ions. Phys. Rev. A 46, 2363–2377 (1992).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Batell, B., McKeen, D. & Pospelov, M. New parity-violating muonic forces and the proton charge radius. Phys. Rev. Lett. 107, 011803 (2011).

    ADS 

    Google Scholar 

  • 42.

    Tucker-Smith, D. & Yavin, I. Muonic hydrogen and MeV forces. Phys. Rev. D 83, 101702 (2011).

    ADS 

    Google Scholar 

  • 43.

    Miller, G. A. Nonperturbative lepton-sea fermions in the nucleon and the proton radius puzzle. Phys. Rev. C 91, 055204 (2015).

    ADS 

    Google Scholar 

  • 44.

    Wang, L. B. & Ni, W. T. Proton radius puzzle and large extra dimensions. Mod. Phys. Lett. A 28, 1350094 (2013).

    ADS 

    Google Scholar 

  • 45.

    Miller, G. A. Proton polarizability contribution: muonic hydrogen Lamb shift and elastic scattering. Phys. Lett. B 718, 1078–1082 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Carlson, C. E. & Freid, M. Extending theories on muon-specific interactions. Phys. Rev. D 92, 095024 (2015).

    ADS 

    Google Scholar 

  • 47.

    Jentschura, U. D. Light sea fermions in electron–proton and muon–proton interactions. Phys. Rev. A 88, 062514 (2013).

    ADS 

    Google Scholar 

  • 48.

    Liu, Y. S., Cloët, I. C. & Miller, G. A. Eta decay and muonic puzzles. Nucl. Phys. B 944, 114638 (2019).

    CAS 
    MATH 

    Google Scholar 

  • 49.

    Marcucci, L. E. et al. Electromagnetic structure of few-nucleon ground states. J. Phys. G 43, 023002 (2016).

    ADS 

    Google Scholar 

  • 50.

    Ekström, A. et al. Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91, 051301 (2015).

    ADS 

    Google Scholar 

  • 51.

    Gazit, D., Quaglioni, S. & Navrátil, P. Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009).

    ADS 

    Google Scholar 

  • 52.

    Karshenboim, S. G. et al. The Lamb shift of the 1s state in hydrogen: two-loop and three-loop contributions. Phys. Lett. B 795, 432–437 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Yerokhin, V. A., Pachucki, K. & Patkóš, V. Theory of the Lamb shift in hydrogen and light hydrogen-like ions. Ann. Phys. 531, 1800324 (2019).

    Google Scholar 

  • 54.

    Jentschura, U. D. Muonic bound systems, virtual particles, and proton radius. Phys. Rev. A 92, 012123 (2015).

    ADS 

    Google Scholar 

  • 55.

    Miller, G. A. Defining the proton radius: a unified treatment. Phys. Rev. C 99, 035202 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Vogelsang, J. et al. Multipass laser cavity for efficient transverse illumination of an elongated volume. Opt. Express 22, 13050–13062 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    Ludhova, L. et al. Planar LAAPDs: temperature dependence, performance, and application in low-energy X-ray spectroscopy. Nucl. Instrum. Methods Phys. Rev. A 540, 169–179 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 58.

    Borie, E. Lamb shift in light muonic atoms – revisited. Preprint at https://arxiv.org/abs/1103.1772 (2014).

  • 59.

    Krutov, A. et al. Theory of the Lamb shift in muonic helium ions. J. Exp. Theor. Phys. 120, 73–90 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 60.

    Karshenboim, S. G., Ivanov, V. G. & Korzinin, E. Y. Relativistic recoil corrections to the electron-vacuum-polarization contribution in light muonic atoms. Phys. Rev. A 85, 032509 (2012).

    ADS 

    Google Scholar 

  • 61.

    Korzinin, E. Y., Ivanov, V. G. & Karshenboim, S. G. α2()4m contributions to the Lamb shift and the fine structure in light muonic atoms. Phys. Rev. D 88, 125019 (2013).

    ADS 

    Google Scholar 

  • 62.

    Jentschura, U. D. & Wundt, B. J. Semi-analytic approach to higher-order corrections in simple muonic bound systems: vacuum polarisation, self-energy and radiative-recoil. Eur. Phys. J. D 65, 357–366 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 63.

    Jentschura, U. D. Proton radius, Darwin–Foldy term and radiative corrections. Eur. Phys. J. D 61, 7–14 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 64.

    Friar, J. L. Nuclear finite-size effects in light muonic atoms. Ann. Phys. 122, 151–196 (1979).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *