Finch, S. Mathematical Constants (Cambridge Univ. Press, 2003).
Bailey, D., Plouffe, S. M., Borwein, P. & Borwein, J. The quest for pi. Math. Intell. 19, 50–56 (1997).
Google Scholar
Apéry, R. Irrationalité de ζ(2) et ζ(3). Asterisque 61, 11–13 (1979).
Zeilberger, D. & Zudilin, W. The irrationality measure of pi is at most 7.103205334137…. Moscow J. Combin. Number. Theory 9, 407–419 (2019).
Google Scholar
Zudilin, W. An Apéry-like difference equation for Catalan’s constant. J. Combin. 10, R14 (2003).
Google Scholar
Hardy, G. H. & Wright, E. M. An Introduction to the Theory of Numbers 5th edn (Oxford Univ. Press, 1980).
Berndt, B. C. Ramanujan’s Notebooks (Springer Science & Business Media, 2012).
Appel, K. I. & Haken, W. Every Planar Map Is Four Colorable Vol. 98 (American Mathematical Society, 1989).
Wilf, H. S. & Zeilberger, D. Rational functions certify combinatorial identities. J. Am. Math. Soc. 3, 147–158 (1990).
Google Scholar
McCune, W. Solution of the Robbins problem. J. Autom. Reason. 19, 263–276 (1997).
Google Scholar
Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005).
Google Scholar
Lample, G. & Charton, F. Deep learning for symbolic mathematics. In ICLR Conf. https://openreview.net/forum?id=S1eZYeHFDS (2020).
Cranmer, M. et al. Discovering symbolic models from deep learning with inductive biases. Preprint at https://arxiv.org/abs/2006.11287 (2020).
Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 230–265 (1937).
Google Scholar
Asimov, I. & Shulman, J. A. Isaac Asimov’s Book of Science and Nature Quotations (Weidenfeld & Nicolson, 1988).
Bohr, N. Rydberg’s Discovery Of The Spectral Laws (C.W.K. Gleerup, 1954).
Shimura, G. Modular forms of half integral weight. In Modular Functions of One Variable I 57–74 (Springer, 1973).
Cuyt, A. A., Petersen, V., Verdonk, B., Waadeland, H. & Jones, W. B. Handbook Of Continued Fractions For Special Functions (Springer Science & Business Media, 2008).
Scott, J. F. The Mathematical Work Of John Wallis (1616–1703) (Taylor and Francis, 1938).
Bowman, D. & Laughlin, J. M. Polynomial continued fractions. Acta Arith. 103, 329–342 (2002).
Google Scholar
McLaughlin, J. M. & Wyshinski, N. J. Real numbers with polynomial continued fraction expansions. Acta Arith. 116, 63–79 (2005).
Google Scholar
Press, W. H. Seemingly Remarkable Mathematical Coincidences Are Easy To Generate (Univ. Texas, 2009).
Euler, L. Introductio In Analysin Infinitorum Vol. 2 (MM Bousquet, 1748).
Petkovšek, M., Wilf, H. S. & Zeilberger, D. A = B (A. K. Peters Ltd., 1996).
Bailey, D., Borwein, J. & Girgensohn, R. Experimental evaluation of Euler sums. Exp. Math. 3, 17–30 (1994).
Google Scholar
Wang, H. Toward mechanical mathematics. IBM J. Res. Develop. 4, 2–22 (1960).
Google Scholar
Lenat, D. B. & Brown, J. S. Why AM and EURISKO appear to work. Artif. Intell. 23, 269–294 (1984).
Google Scholar
Lenat, D. B. The nature of heuristics. Artif. Intell. 19, 189–249 (1982).
Google Scholar
Davis, R. & Lenat, D. B. Knowledge-Based Systems In Artificial Intelligence (McGraw-Hill, 1982).
Fajtlowicz, S. On conjectures of Graffiti. In Annals of Discrete Mathematics Vol. 38, 113–118 (Elsevier, 1988).
Alessandretti, L., Baronchelli, A. & He, Y.-H. Machine learning meets number theory: the data science of Birch–Swinnerton-Dyer. Preprint at https://arxiv.org/abs/1911.02008 (2019).
Chen, W. Y., Hou, Q. H. & Zeilberger, D. Automated discovery and proof of congruence theorems for partial sums of combinatorial sequences. J. Diff. Equ. Appl. 22, 780–788 (2016).
Google Scholar
Buchberger, B. et al. Theorema: towards computer-aided mathematical theory exploration. J. Appl. Log. 4, 470–504 (2006).
Google Scholar
Ferguson, H., Bailey, D. & Arno, S. Analysis of PSLQ, an integer relation finding algorithm. Math. Comput. Am. Math. Soc. 68, 351–369 (1999).
Google Scholar
Bailey, D., Borwein, P. & Plouffe, S. On the rapid computation of various polylogarithmic constants. Math. Comput. Am. Math. Soc. 66, 903–913 (1997).
Google Scholar
Bailey, D. & Broadhurst, D. J. Parallel integer relation detection: techniques and applications. Math. Comput. 70, 1719–1737 (2000).
Google Scholar
Wolfram, S. A New Kind Of Science Vol. 5 (Wolfram Media, 2002).
Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).
Google Scholar
He, Y.-H. Deep-learning the landscape. Preprint at https://arxiv.org/abs/1706.02714 (2017).
Wu, T. & Tegmark, M. Toward an artificial intelligence physicist for unsupervised learning. Phys. Rev. E 100, 033311 (2019).
Google Scholar
Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. In Advances in Neural Information Processing Systems (NEURIPS2019) Vol. 32, 15379−15389 (2019).
Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).
Google Scholar
Udrescu, S. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).
Google Scholar
Wiles, A. Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995).
Google Scholar
Smale, S. Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998).
Google Scholar
Van der Poorten, A. & Apéry, R. A proof that Euler missed…. Math. Intell. 1, 195–203 (1979).
Google Scholar
Borwein, J., Borwein, P. & Bailey, D. Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi. Am. Math. Mon. 96, 201–219 (1989).
Google Scholar
Pilehrood, K. H. & Pilehrood, T. H. Series acceleration formulas for beta values. Discret. Math. Theor. Comput. Sci. 12, 223–236 (2010).
Google Scholar
Kim, S. Normality analysis of current world record computations for Catalan’s constant and arc length of a lemniscate with a = 1. Preprint at https://arxiv.org/abs/1908.08925 (2019).
Nesterenko, Y. V. On Catalan’s constant. Proc. Steklov Inst. Math. 292, 153–170 (2016).
Google Scholar
Zudilin, W. Well-poised hypergeometric service for diophantine problems of zeta values. J. Théor. Nomb. Bordeaux 15, 593–626 (2003).
Google Scholar
Zudilin, W. One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means. Symmetry Integr. Geom. 14, 028 (2018).
Raayoni, G. et al. The Ramanujan machine: automatically generated conjectures on fundamental constants. Preprint at https://arxiv.org/abs/1907.00205 (2019).
Dougherty-Bliss, R. & Zeilberger, D. Automatic conjecturing and proving of exact values of some infinite families of infinite continued fractions. Preprint at https://arxiv.org/abs/2004.00090 (2020).
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
Google Scholar
Zudilin, W. A third-order Apéry-like recursion for ζ(5). Mathematical Notes [Mat. Zametki] 72, 733–737 [796–800] (2002).
Google Scholar
Rivoal, T. Rational approximations for values of derivatives of the Gamma function. Trans. Am. Math. Soc. 361, 6115–6149 (2009).
Google Scholar