Strange India All Strange Things About India and worldStrange India All Strange Things About India and world


  • 1.

    Lewis, M. R. & Lewis. W. H. Mitochondria (and other cytoplasmic structures) in tissue cultures. Am. J. Anat. 17, 339–401 (1915).

    Google Scholar 

  • 2.

    Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Jornayvaz, F. R. & Shulman, G. I. Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69–84 (2010).

    CAS 

    Google Scholar 

  • 4.

    Schmitt, K. et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27, 657–666 (2018).

    CAS 

    Google Scholar 

  • 5.

    Kraus, F. & Ryan, M. T. The constriction and scission machineries involved in mitochondrial fission. J. Cell Sci. 130, 2953–2960 (2017).

    CAS 

    Google Scholar 

  • 6.

    Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Kuroiwa, T. et al. Structure, function and evolution of the mitochondrial division apparatus. Biochim. Biophys. Acta 1763, 510–521 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Rowlett, V. W. & Margolin, W. The bacterial divisome: ready for its close-up. Phil. Trans. R. Soc. Lond. B 370, 20150028 (2015).

    Google Scholar 

  • 11.

    Haeusser, D. P. & Margolin, W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol. 14, 305–319 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Osteryoung, K. W. & Nunnari, J. The division of endosymbiotic organelles. Science 302, 1698–1704 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Nishida, K. et al. Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J. Histochem. Cytochem. 52, 843–849 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239 (2018). This study demonstrates that DRP1 can sever membrane tubules and is independent of endocytic dynamins in mitochondrial fission.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Rosenbloom, A. B. et al. Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant. Proc. Natl Acad. Sci. USA 111, 13093–13098 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Kalia, R. et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558, 401–405 (2018). Structural insights from a complex of DRP1 with its adaptor suggest a mechanism for adaptor disengagement from DRP1 upon GTP hydrolysis.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Reubold, T. F. et al. Crystal structure of the dynamin tetramer. Nature 525, 404–408 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Ford, M. G., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature 477, 561–566 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–560 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Bohuszewicz, O. & Low, H. H. Structure of a mitochondrial fission dynamin in the closed conformation. Nat. Struct. Mol. Biol. 25, 722–731 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Kong, L. et al. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258–262 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Gao, S. et al. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 35, 514–525 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Adachi, Y. et al. Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol. Cell 63, 1034–1043 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Bustillo-Zabalbeitia, I. et al. Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS ONE 9, e102738 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Francy, C. A., Clinton, R. W., Fröhlich, C., Murphy, C. & Mears, J. A. Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer. Sci. Rep. 7, 10744 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Stepanyants, N. et al. Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol. Biol. Cell 26, 3104–3116 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Strack, S. & Cribbs, J. T. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J. Biol. Chem. 287, 10990–11001 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Clinton, R. W., Francy, C. A., Ramachandran, R., Qi, X. & Mears, J. A. Dynamin-related protein 1 oligomerization in solution impairs functional interactions with membrane-anchored mitochondrial fission factor. J. Biol. Chem. 291, 478–492 (2016).

    CAS 

    Google Scholar 

  • 33.

    Lu, B. et al. Steric interference from intrinsically disordered regions controls dynamin-related protein 1 self-assembly during mitochondrial fission. Sci. Rep. 8, 10879 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Koirala, S. et al. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl Acad. Sci. USA 110, E1342–E1351 (2013). A systematic analysis of the independent contribution of adaptors to mitochondrial division.

    CAS 

    Google Scholar 

  • 35.

    Lackner, L. L., Horner, J. S. & Nunnari, J. Mechanistic analysis of a dynamin effector. Science 325, 874–877 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158 (2010). This paper establishes that MFF recruits DRP1 for fission, whereas FIS1 is dispensable.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Arimura, S. I. Fission and fusion of plant mitochondria, and genome maintenance. Plant Physiol. 176, 152–161 (2018).

    CAS 

    Google Scholar 

  • 39.

    Melatti, C. et al. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog. 15, e1007512 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Xian, H., Yang, Q., Xiao, L., Shen, H. M. & Liou, Y. C. STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nat. Commun. 10, 2059 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Shen, Q. et al. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25, 145–159 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Costello, J. L. et al. Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J. Cell Sci. 130, 1675–1687 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008). The discovery of MFF is reported, and the fact that loss of MFF phenocopies loss of DRP1 is demonstrated.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212, 531–544 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Losón, O. C. et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22, 367–377 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Losón, O. C. et al. Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci. 24, 386–394 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Palmer, C. S. et al. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565–573 (2011). This study reports the discovery of MiD proteins as adaptors for DRP1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Richter, V. et al. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204, 477–486 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Ma, J. et al. New interfaces on MiD51 for Drp1 recruitment and regulation. PLoS ONE 14, e0211459 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Liu, R. & Chan, D. C. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol. Biol. Cell 26, 4466–4477 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Zhang, Z., Liu, L., Wu, S. & Xing, D. Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis. FASEB J. 30, 466–476 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Palmer, C. S. et al. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 288, 27584–27593 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of ER–mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. 128, 2795–2804 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011). The authors report the role of the ER in inducing mitochondrial constriction sites for fission.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Helle, S. C. J. et al. Mechanical force induces mitochondrial fission. eLife 6, e30292 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Itoh, K. et al. A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane. J. Biol. Chem. 293, 11809–11822 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Ford, M. G. J. & Chappie, J. S. The structural biology of the dynamin-related proteins: new insights into a diverse, multitalented family. Traffic 20, 717–740 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Macdonald, P. J. et al. Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J. Biol. Chem. 291, 493–507 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Chang, C. R. & Blackstone, C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci. 1201, 34–39 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833, 1256–1268 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Cribbs, J. T. & Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939–944 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803–15808 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Yu, B. et al. Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics. Nat. Commun. 11, 2549 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Cherok, E. et al. Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5-dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Mol. Biol. Cell 28, 396–410 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Xu, S. et al. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27, 349–359 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016). A kinase-controlled signalling axis that links metabolism to mitochondrial division is delineated.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    de Brito, O. M. & Scorrano, L. An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship. EMBO J. 29, 2715–2723 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Giacomello, M. & Pellegrini, L. The coming of age of the mitochondria–ER contact: a matter of thickness. Cell Death Differ. 23, 1417–1427 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841, 595–609 (2014).

    CAS 

    Google Scholar 

  • 72.

    Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    CAS 

    Google Scholar 

  • 73.

    Li, S. et al. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J. Cell Biol. 208, 109–123 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks. Nat. Commun. 7, 12886 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Manor, U. et al. A mitochondria-anchored isoform of the actin–nucleating spire protein regulates mitochondrial division. eLife 4, (2015).

  • 76.

    Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013). This study links actin dynamics, the ER and IFN2 to mitochondrial division.

    ADS 
    CAS 

    Google Scholar 

  • 77.

    Chakrabarti, R. et al. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217, 251–268 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Yang, C. & Svitkina, T. M. Ultrastructure and dynamics of the actin–myosin II cytoskeleton during mitochondrial fission. Nat. Cell Biol. 21, 603–613 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Korobova, F., Gauvin, T. J. & Higgs, H. N. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24, 409–414 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Hatch, A. L., Ji, W. K., Merrill, R. A., Strack, S. & Higgs, H. N. Actin filaments as dynamic reservoirs for Drp1 recruitment. Mol. Biol. Cell 27, 3109–3121 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018). Lysosome–mitochondria contacts are shown to influence mitochondrial division.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Nagashima, S. et al. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367, 1366–1371 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Ackema, K. B. et al. The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J. 33, 2659–2675 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER–mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016). These results provide insights into the coordination between mitochondrial DNA replication and division.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9, 12419 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Anand, R. et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204, 919–929 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Faelber, K. et al. Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 571, 429–433 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Zhang, D. et al. Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding. eLife 9, e50294 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Cho, B. et al. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat. Commun. 8, 15754 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Fox, C. A., Ellison, P., Ikon, N. & Ryan, R. O. Calcium-induced transformation of cardiolipin nanodisks. Biochim. Biophys. Acta Biomembr. 1861, 1030–1036 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Basu, K. et al. Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. PLoS ONE 12, e0179397 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Dar, S., Kamerkar, S. C. & Pucadyil, T. J. A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nat. Cell Biol. 17, 1588–1596 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Dar, S., Kamerkar, S. C. & Pucadyil, T. J. Use of the supported membrane tube assay system for real-time analysis of membrane fission reactions. Nat. Protoc. 12, 390–400 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Purkanti, R. & Thattai, M. Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc. Natl Acad. Sci. USA 112, 2800–2805 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139–143 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Fonseca, T. B., Sánchez-Guerrero, Á., Milosevic, I. & Raimundo, N. Mitochondrial fission requires DRP1 but not dynamins. Nature 570, E34–E42 (2019). DRP1, and not the endocytic dynamins, is shown to be necessary for mitochondrial fission.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Favaro, G. et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat. Commun. 10, 2576 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Hennings, T. G. et al. In vivo deletion of β-cell Drp1 impairs insulin secretion without affecting islet oxygen consumption. Endocrinology 159, 3245–3256 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Simula, L. et al. Drp1 controls effective T cell immune-surveillance by regulating T cell migration, proliferation, and cMyc-dependent metabolic reprogramming. Cell Rep. 25, 3059–3073 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Sesaki, H., Southard, S. M., Yaffe, M. P. & Jensen, R. E. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342–2356 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 107.

    Chen, L. & Knowlton, A. A. Mitochondrial dynamics in heart failure. Congest. Heart Fail. 17, 257–261 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Yamada, T. et al. Mitochondrial stasis reveals p62-mediated ubiquitination in Parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metab. 28, 588–604 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Verrigni, D. et al. Clinical-genetic features and peculiar muscle histopathology in infantile DNM1L-related mitochondrial epileptic encephalopathy. Hum. Mutat. 40, 601–618 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

    CAS 

    Google Scholar 

  • 111.

    Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 54, 397–406 (2012).

    Google Scholar 

  • 112.

    Koch, J. et al. Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy. J. Med. Genet. 53, 270–278 (2016).

    CAS 

    Google Scholar 

  • 113.

    Bartsakoulia, M. et al. A novel mechanism causing imbalance of mitochondrial fusion and fission in human myopathies. Hum. Mol. Genet. 27, 1186–1195 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). Detailed microscopic observations reveal the importance of fission as a surveillance measure for mitochondrial quality control.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219, e201911122 (2020). A role for the ER in regulating both mitochondrial fission and fusion machineries is established.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Nguyen, T. N., Padman, B. S. & Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26, 733–744 (2016).

    CAS 

    Google Scholar 

  • 117.

    Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    CAS 

    Google Scholar 

  • 118.

    Gomes, L. C. & Scorrano, L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta 1833, 205–212 (2013).

    CAS 

    Google Scholar 

  • 119.

    Lieber, T., Jeedigunta, S. P., Palozzi, J. M., Lehmann, R. & Hurd, T. R. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570, 380–384 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Rana, A. et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat. Commun. 8, 448 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017). This study supports the role of DRP1 and division in segregating mitochondrial fragments away from the larger population for selective, rather than bulk, turnover.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Bernard, G. et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848 (2007).

    Google Scholar 

  • 123.

    Pfluger, P. T. et al. Calcineurin links mitochondrial elongation with energy metabolism. Cell Metab. 22, 838–850 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 124.

    Kim, Y. M. et al. Redox regulation of mitochondrial fission protein Drp1 by protein disulfide isomerase limits endothelial senescence. Cell Rep. 23, 3565–3578 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Chen, Z. et al. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat. Commun. 10, 104 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Morita, M. et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922–935 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 129.

    Wang, L. et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 58, 2371–2380 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 130.

    Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Prieto, J. et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun. 7, 11124 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Serasinghe, M. N. et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57, 521–536 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Kashatus, J. A. et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57, 537–551 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 134.

    Nagdas, S. et al. Drp1 promotes KRas-driven metabolic changes to drive pancreatic tumor growth. Cell Rep. 28, 1845–1859 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Xie, Q. et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat. Neurosci. 18, 501–510 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Sheng, Z. H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 27, 403–416 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Csordás, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121–132 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    MacAskill, A. F. & Kittler, J. T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 139.

    Chang, D. T., Honick, A. S. & Reynolds, I. J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 140.

    Kang, J. S. et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137–148 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 141.

    Lewis, T. L. Jr, Kwon, S. K., Lee, A., Shaw, R. & Polleux, F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 9, 5008 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 142.

    Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 143.

    Shields, L. Y. et al. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis. 6, e1725 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 144.

    Horn, A., Raavicharla, S., Shah, S., Cox, D. & Jaiswal, J. K. Mitochondrial fragmentation enables localized signaling required for cell repair. J. Cell Biol. 219, e201909154 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 145.

    Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 146.

    Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 147.

    McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Prudent, J. et al. MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol. Cell 59, 941–955 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 149.

    Nishimura, A. et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci. Signal. 11, eaat5185 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 150.

    Ong, S. B. et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121, 2012–2022 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 151.

    Sabouny, R. & Shutt, T. E. Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem. Sci. 45, 564–577 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Samangouei, P. et al. MiD49 and MiD51: new mediators of mitochondrial fission and novel targets for cardioprotection. Cond. Med. 1, 239–246 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 153.

    Zhou, H. et al. Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J. Am. Heart Assoc. 6, e005328 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 154.

    Civenni, G. et al. Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab. 30, 303–318 (2019).

    CAS 

    Google Scholar 

  • 155.

    Udagawa, O. & Ishihara, N. Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes. J. Biochem. 167, 257–266 (2020).

    CAS 

    Google Scholar 

  • 156.

    Tian, L. et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J. Mol. Med. (Berl.) 95, 381–393 (2017).

    CAS 

    Google Scholar 

  • 157.

    Humphries, B. A. et al. Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Res. 22, 60 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *