Strange IndiaStrange India


  • 1.

    Ward, Z. J. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019).

    Article 

    Google Scholar 

  • 2.

    Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Carpentier, A. C. et al. Brown adipose tissue energy metabolism in humans. Front. Endocrinol. 9, 447 (2018).

    Article 

    Google Scholar 

  • 4.

    Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Challa, T. D. et al. A genetic model to study the contribution of brown and brite adipocytes to metabolism. Cell Rep. 30, 3424–3433.e4 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Betz, M. J. & Enerbäck, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 14, 77–87 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 660–671.e3 (2017).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kazak, L. et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat. Metab. 1, 360–370 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Perna, M. K. et al. Creatine transporter deficiency leads to increased whole body and cellular metabolism. Amino Acids 48, 2057–2065 (2016).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Corrigan, J. K. et al. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. eLife 9, e53560 (2020).

    Article 

    Google Scholar 

  • 12.

    Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K. & Eppenberger, H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281, 21–40 (1992).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Schlattner, U., Tokarska-Schlattner, M. & Wallimann, T. Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta 1762, 164–180 (2006).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Long, J. Z. et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 19, 810–820 (2014).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Roh, H. C. et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121–1137.e5 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Min, S. Y. et al. Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc. Natl Acad. Sci. USA 116, 17970–17979 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Kazak, L. et al. Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res. 41, 2354–2369 (2013).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kazak, L. et al. A cryptic targeting signal creates a mitochondrial FEN1 isoform with tailed R-loop binding properties. PLoS ONE 8, e62340 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Backes, S. et al. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Furter, R., Furter-Graves, E. M. & Wallimann, T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32, 7022–7029 (1993).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Hornemann, T., Rutishauser, D. & Wallimann, T. Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits. Biochim. Biophys. Acta 1480, 365–373 (2000).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. & Walker, J. E. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl Acad. Sci. USA 107, 16823–16827 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Guo, J. & Hall, K. D. Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput. Biol. 5, e1000511 (2009).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Lowe, M. T., Kim, E. H., Faull, R. L., Christie, D. L. & Waldvogel, H. J. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J. Cereb. Blood Flow Metab. 33, 1295–1306 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Eppenberger, H. M., Dawson, D. M. & Kaplan, N. O. The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J. Biol. Chem. 242, 204–209 (1967).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Rosenwald, M., Perdikari, A., Rülicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Vergnes, L. et al. Adipocyte browning and higher mitochondrial function in periadrenal but not SC fat in pheochromocytoma. J. Clin. Endocrinol. Metab. 101, 4440–4448 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Guo, J. & Hall, K. D. Predicting changes of body weight, body fat, energy expenditure and metabolic fuel selection in C57BL/6 mice. PLoS ONE 6, e15961 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *