Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
Google Scholar
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
Google Scholar
Guan, Q. et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 246, 111890 (2020).
Google Scholar
Spyrakos, E. et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 63, 846–870 (2018).
Google Scholar
Bloesch, J. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshw. Res. 46, 295–304 (1995).
Google Scholar
Valipour, R., Boegman, L., Bouffard, D. & Rao, Y. R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 62, 1045–1065 (2017).
Google Scholar
Wang, M., Nim, C. J., Son, S. & Shi, W. Characterization of turbidity in Florida’s Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements. Water Res. 46, 5410–5422 (2012).
Google Scholar
Cao, Z., Duan, H., Feng, L., Ma, R. & Xue, K. Climate-and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 192, 98–113 (2017).
Google Scholar
Sompongchaiyakul, P., Laongsiriwong, N. & Sangkarnjanawanich, P. An occurrence of eutrophication in Songkhla Lake: a review. In Proceedings of the International Workshop on Integrated Lake Management, Hai-Yai, Songkhla, 19–21 (2004).
Gordon, H. R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 102, 17081–17106 (1997).
Google Scholar
Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).
Google Scholar
Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Oceans 115, C04002 (2010).
Google Scholar
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A. & Hubanks, P. A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).
Google Scholar
Qi, L., Hu, C., Visser, P. M. & Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 63, 1711–1726 (2018).
Google Scholar
Bosse, K. R. et al. Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: implications for remote sensing observations. J. Great Lakes Res. 45, 480–489 (2019).
Google Scholar
Büttner, G., Korándi, M., Gyömörei, A., Köte, Z. & Szabó, G. Satellite remote sensing of inland waters: Lake Balaton and reservoir Kisköre. Acta Astronaut. 15, 305–311 (1987).
Google Scholar
Bukata, R., Jerome, J. & Bruton, J. Particulate concentrations in Lake St. Clair as recorded by a shipborne multispectral optical monitoring system. Remote Sens. Environ. 25, 201–229 (1988).
Google Scholar
Nas, B., Ekercin, S., Karabörk, H., Berktay, A. & Mulla, D. An application of Landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Wat. Air Soil Pollut. 212, 183–197 (2010).
Google Scholar
Binding, C., Jerome, J., Bukata, R. & Booty, W. Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. Int. J. Remote Sens. 31, 5239–5255 (2010).
Google Scholar
Matthews, M. W., Bernard, S. & Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens. Environ. 114, 2070–2087 (2010).
Google Scholar
Kaba, E., Philpot, W. & Steenhuis, T. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 26, 286–297 (2014).
Google Scholar
Hamed, M. A. Estimation of water quality parameters in Lake Nasser using remote sensing techniques. In Twentieth International Water Technology Conference, IWTC20 (2017).
Zeng, C. & Binding, C. The effect of mineral sediments on satellite chlorophyll-a retrievals from line-height algorithms using red and near-infrared bands. Remote Sens. 11, 2306 (2019).
Google Scholar
Mikkelsen, O. A. Variation in the projected surface area of suspended particles: Implications for remote sensing assessment of TSM. Remote Sens. Environ. 79, 23–29 (2002).
Google Scholar
Dekker, A., Vos, R. & Peters, S. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 268, 197–214 (2001).
Google Scholar
Doxaran, D., Froidefond, J.-M., Lavender, S. & Castaing, P. Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 81, 149–161 (2002).
Google Scholar
Koponen, S., Pulliainen, J., Kallio, K. & Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 79, 51–59 (2002).
Google Scholar
Liu, J. P. et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Cont. Shelf Res. 26, 2141–2156 (2006).
Google Scholar
Sterckx, S., Knaeps, E., Bollen, M., Trouw, K. & Houthuys, R. Retrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt estuary at different stages in the tidal cycle. Mar. Geod. 30, 97–108 (2007).
Google Scholar
Oyama, Y., Matsushita, B., Fukushima, T., Matsushige, K. & Imai, A. Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS J. Photogramm. Remote Sens. 64, 73–85 (2009).
Google Scholar
Tarrant, P., Amacher, J. & Neuer, S. Assessing the potential of Medium‐Resolution Imaging Spectrometer (MERIS) and Moderate‐Resolution Imaging Spectroradiometer (MODIS) data for monitoring total suspended matter in small and intermediate sized lakes and reservoirs. Wat. Resour. Res. 46, W09532 (2010).
Google Scholar
Nechad, B., Ruddick, K. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).
Google Scholar
Chen, S., Huang, W., Chen, W. & Chen, X. An enhanced MODIS remote sensing model for detecting rainfall effects on sediment plume in the coastal waters of Apalachicola Bay. Mar. Environ. Res. 72, 265–272 (2011).
Google Scholar
Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K. & Sterckx, S. In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sens. Environ. 120, 133–144 (2012).
Google Scholar
Long, C. M. & Pavelsky, T. M. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 129, 197–209 (2013).
Google Scholar
Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A. & Morabito, G. Optical remote sensing of lakes: an overview on Lake Maggiore. J. Limnol. 73, 201–214 (2014).
Feng, L., Hu, C., Chen, X. & Song, Q. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 140, 779–788 (2014).
Google Scholar
Dorji, P. & Fearns, P. A quantitative comparison of total suspended sediment algorithms: a case study of the last decade for MODIS and Landsat-based sensors. Remote Sens. 8, 810 (2016).
Google Scholar
Dogliotti, A. I., Ruddick, K., Nechad, B., Doxaran, D. & Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 156, 157–168 (2015).
Google Scholar
Han, B. et al. Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters. Remote Sens. 8, 211 (2016).
Google Scholar
Yu, X. et al. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 235, 111491 (2019).
Google Scholar
Zhang, X. On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China. Int. J. Remote Sens. 19, 11–20 (1998).
Google Scholar
Vahtmäe, E., Kutser, T., Martin, G. & Kotta, J. Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study. Remote Sens. Environ. 101, 342–351 (2006).
Google Scholar
Dogan, O. K., Akyurek, Z. & Beklioglu, M. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data. J. Environ. Manage. 90, 2138–2143 (2009).
Google Scholar
Yuan, L. & Zhang, L.-Q. Mapping large-scale distribution of submerged aquatic vegetation coverage using remote sensing. Ecol. Inform. 3, 245–251 (2008).
Google Scholar
Yadav, S. et al. A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa. Remote Sens. 9, 966 (2017).
Google Scholar
Pu, R., Bell, S., Baggett, L., Meyer, C. & Zhao, Y. Discrimination of seagrass species and cover classes with in situ hyperspectral data. J. Coast. Res. 28, 1330–1344 (2012).
Google Scholar
Visser, F., Wallis, C. & Sinnott, A. M. Optical remote sensing of submerged aquatic vegetation: opportunities for shallow clearwater streams. Limnologica 43, 388–398 (2013).
Google Scholar
Watanabe, F. S. Y., Imai, N. N., Alcântara, E. H., da Silva Rotta, L. H. & Utsumi, A. G. Signal classification of submerged aquatic vegetation based on the hemispherical–conical reflectance factor spectrum shape in the yellow and red regions. Remote Sens. 5, 1856–1874 (2013).
Google Scholar
Giardino, C. et al. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens. Environ. 157, 48–57 (2015).
Google Scholar
Oyama, Y., Matsushita, B. & Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 157, 35–47 (2015).
Google Scholar
Santos, M. J., Anderson, L. W. & Ustin, S. L. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biol. Invasions 13, 443–457 (2011).
Google Scholar
Luo, J. et al. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 60, 503–513 (2016).
Google Scholar
Hou, X., Feng, L., Chen, X. & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS J. Photogramm. Remote Sens. 141, 148–160 (2018).
Google Scholar
Brooks, C. N., Grimm, A. G., Marcarelli, A. M. & Dobson, R. J. Multiscale collection and analysis of submerged aquatic vegetation spectral profiles for Eurasian watermilfoil detection. J. Appl. Remote Sens. 13, 037501 (2019).
Google Scholar
Fritz, C., Kuhwald, K., Schneider, T., Geist, J. & Oppelt, N. Sentinel-2 for mapping the spatio-temporal development of submerged aquatic vegetation at Lake Starnberg (Germany). J. Limnol. 78, 71–91 (2019).
Google Scholar
Ghirardi, N. et al. Spatiotemporal dynamics of submerged aquatic vegetation in a deep lake from Sentinel-2 data. Water 11, 563 (2019).
Google Scholar
Niroumand-Jadidi, M., Pahlevan, N. & Vitti, A. Mapping substrate types and compositions in shallow streams. Remote Sens. 11, 262 (2019).
Google Scholar
Wilson, K. L., Skinner, M. A. & Lotze, H. K. Eelgrass (Zostera marina) and benthic habitat mapping in Atlantic Canada using high-resolution SPOT 6/7 satellite imagery. Estuar. Coast. Shelf Sci. 226, 106292 (2019).
Google Scholar
Niemeier, P. E. & Hubert, W. A. The 85-year history of the aquatic macrophyte species composition in a eutrophic prairie lake (United States). Aquat. Bot. 25, 83–89 (1986).
Google Scholar
Toshner, S. & Region-Brule, N. Fishery Survey–Middle Eau Claire Lake Bayfield County, 2004–2005. Report WBIC 2742100 (2006).
Depew, D. C., Houben, A. J., Ozersky, T., Hecky, R. E. & Guildford, S. J. Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency. J. Great Lakes Res. 37, 72–82 (2011).
Google Scholar
Vicencio, E. J. M. & Buot, I. E., Jr. Aquatic weed flora on the Southwest Lakeside of Laguna De Bay. J Wetl Biodivers 7, 75–90 (2017).
Bond, W. & Roberts, M. The colonization of Cabora Bassa, Moçambique, a new man-made lake, by floating aquatic macrophytes. Hydrobiologia 60, 243–259 (1978).
Google Scholar
Istvánovics, V., Honti, M., Kovács, Á. & Osztoics, A. Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungary). Aquat. Bot. 88, 317–330 (2008).
Google Scholar
French, J. R. P. III Effect of submersed aquatic macrophytes on resource partitioning in yearling rock bass (Ambloplites rupestris) and pumpkinseeds (Lepomis gibbosus) in Lake St. Clair. J. Great Lakes Res. 14, 291–300 (1988).
Google Scholar
Balesic, H. Comparative ecology of four species of darters (Etheostominae) in Lake Dauphin and its tributary, the Valley River. MSc thesis, Univ. of Manitoba (1971).
Li, R., Zhang, Q.-Z., Jiang, Y.-B., Zhang, L. & Shao, X.-M. Species diversity of plant communities of Xingkai Lake wetlands under different levels of disturbance. Wetland Science 9, 179–184 (2011).
Liu, W., Deng, W., Wang, G., Li, A. & Zhou, J. Aquatic macrophyte status and variation characteristics in the past 50 years in Hongzehu Lake. J. Hydroecol 2, 1–8 (2009).
Shengzhao, Z. Aquatic vegetation in Hongze Lake. J. Lake Sci. 1, 63–70 (1992).
Google Scholar
Ward, J. & Talbot, J. Distribution of aquatic macrophytes in Lake Alexandrina, New Zealand. N. Z. J. Mar. Freshw. Res. 18, 211–220 (1984).
Google Scholar
Wang, S. & Dou, H. Chinese Lake Catalogues (Science Press, 1998).
Havens, K. E., Fox, D., Gornak, S. & Hanlon, C. Aquatic vegetation and largemouth bass population responses to water-level variations in Lake Okeechobee, Florida (USA). Hydrobiologia 539, 225–237 (2005).
Google Scholar
García, M. et al. Heavy metals in aquatic plants and their relationship to concentrations in surface water, groundwater and sediments-A case study of Poopó basin, Bolivia. Rev. Boliv. Quím. 22, 11–18 (2005).
Fang, C. et al. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) algorithm. J. Environ. Inform. 34, 108–122 (2018).
Chen, Y. Studies on the potamogetonaceae in Qinghai Lake. Acta Hydrobiol. Sin. 11, 228–235 (1987).
Pen, M. Vegetation types and distributions around Gyaring Lake and Ngoring Lake. Acta Biol. Plateau Sin. 7, 71–79 (1987).
Li, W. Study on aquatic vegetation in Wulungu Lake, Xinjiang. Oceanol. Limnol. Sin. 24, 100–108 (1993).
Machena, C. Zonation of submerged macrophyte vegetation in Lake Kariba, Zimbabwe and its ecological interpretation. Vegetatio 73, 111–119 (1988).
Google Scholar
Aladin, N., Filippov, A., Plotnikov, I., Orlova, M. & Williams, W. Changes in the structure and function of biological communities in the Aral Sea, with particular reference to the northern part (Small Aral Sea), 1985–1994: a review. Int. J. Salt Lake Res. 7, 301–343 (1998).
Gabriel, A. O. & Bodensteiner, L. R. Impacts of riprap on wetland shorelines, upper Winnebago pool lakes, Wisconsin. Wetlands 32, 105–117 (2012).
Google Scholar
Badzinski, S. S., Ankney, C. D. & Petrie, S. A. in Limnology and Aquatic Birds 195–211 (Springer, 2006).
Chepinoga, V. V., Bergmeier, E., Rosbakh, S. A. & Fleckenstein, K. M. Classification of aquatic vegetation (Potametea) in Baikal Siberia, Russia, and its diversity in a northern Eurasian context. Phytocoenologia 43, 127–167 (2013).
Google Scholar
Jaikumar, M., Chellaiyan, D., Kanagu, L., Kumar, P. S. & Stella, C. Distribution and succession of aquatic macrophytes in Chilka Lake-India. J. Ecol. Nat. Environ. 3, 499–508 (2011).
Krivonogov, S. K. et al. Regional to local environmental changes in southern Western Siberia: evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeogr. Palaeoclimatol. Palaeoecol. 331–332, 177–193 (2012).
Google Scholar
Romanova, S. & Kazangapova, N. Theory and Practice of Selfpurification Capacities of Natural Water in Kazakhstan. Technical Report (National Academy of Sciences of the Republic of Kazakhstan, 2018).
Villamagna, A. M., Murphy, B. R. & Karpanty, S. M. Community-level waterbird responses to water hyacinth (Eichhornia crassipes). Invasive Plant Sci. Manag. 5, 353–362 (2012).
Google Scholar
Imentai, A., Thevs, N., Schmidt, S., Nurtazin, S. & Salmurzauli, R. Vegetation, fauna, and biodiversity of the Ile delta and southern Lake Balkhash—a review. J. Great Lakes Res. 41, 688–696 (2015).
Google Scholar
Barrientos, C. A. Fish Abundance and Community Composition in Native and Non-Native Littoral Aquatic Plants at Lake Izabal, Guatemala. MSc thesis, Univ. of Florida (2005).
Tehranchi, M., Shafiei, A. D. & Shaghaghi, S. Studying solutions of development of tourism in Urmia Lake based on SWOT model. Adv. Environ. Biol. 2013, 4505–4512 (2013).
Davies, W. D. Lake Nicaragua fishery resources in Investigations of the ichthyofauna of Nicaraguan Lakes (ed. Thorson, T. B.) 16 (Univ. of Nebraska Lincoln, 1976).
Cheruiyot, E. et al. Evaluating MERIS-based aquatic vegetation mapping in Lake Victoria. Remote Sens. 6, 7762–7782 (2014).
Google Scholar
Heblinski, J. et al. High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment. Hydrobiologia 661, 97–111 (2011).
Google Scholar
Beklioglu, M., Altinayar, G. & Tan, C. O. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Arch. Hydrobiol. 166, 535–556 (2006).
Google Scholar
Green, J. in The Nile (ed. Dumont H. J.) 263–286 (Springer, 2009).
Kalman, L. S. & Peltzer, G. R. Simulation of Landsat Thematic Mapper imagery using AVIRIS hyperspectral imagery. In 4th Annual JPL Airborne Geoscience Workshop (1993).