Strange India All Strange Things About India and world


  • 1.

    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Guan, Q. et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 246, 111890 (2020).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Spyrakos, E. et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 63, 846–870 (2018).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Bloesch, J. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshw. Res. 46, 295–304 (1995).

    Article 

    Google Scholar 

  • 6.

    Valipour, R., Boegman, L., Bouffard, D. & Rao, Y. R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 62, 1045–1065 (2017).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Wang, M., Nim, C. J., Son, S. & Shi, W. Characterization of turbidity in Florida’s Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements. Water Res. 46, 5410–5422 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Cao, Z., Duan, H., Feng, L., Ma, R. & Xue, K. Climate-and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 192, 98–113 (2017).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Sompongchaiyakul, P., Laongsiriwong, N. & Sangkarnjanawanich, P. An occurrence of eutrophication in Songkhla Lake: a review. In Proceedings of the International Workshop on Integrated Lake Management, Hai-Yai, Songkhla, 19–21 (2004).

  • 10.

    Gordon, H. R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 102, 17081–17106 (1997).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Oceans 115, C04002 (2010).

    ADS 
    Article 

    Google Scholar 

  • 13.

    King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A. & Hubanks, P. A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Qi, L., Hu, C., Visser, P. M. & Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 63, 1711–1726 (2018).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Bosse, K. R. et al. Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: implications for remote sensing observations. J. Great Lakes Res. 45, 480–489 (2019).

    Article 

    Google Scholar 

  • 16.

    Büttner, G., Korándi, M., Gyömörei, A., Köte, Z. & Szabó, G. Satellite remote sensing of inland waters: Lake Balaton and reservoir Kisköre. Acta Astronaut. 15, 305–311 (1987).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Bukata, R., Jerome, J. & Bruton, J. Particulate concentrations in Lake St. Clair as recorded by a shipborne multispectral optical monitoring system. Remote Sens. Environ. 25, 201–229 (1988).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Nas, B., Ekercin, S., Karabörk, H., Berktay, A. & Mulla, D. An application of Landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Wat. Air Soil Pollut. 212, 183–197 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Binding, C., Jerome, J., Bukata, R. & Booty, W. Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. Int. J. Remote Sens. 31, 5239–5255 (2010).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Matthews, M. W., Bernard, S. & Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens. Environ. 114, 2070–2087 (2010).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Kaba, E., Philpot, W. & Steenhuis, T. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 26, 286–297 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Hamed, M. A. Estimation of water quality parameters in Lake Nasser using remote sensing techniques. In Twentieth International Water Technology Conference, IWTC20 (2017).

  • 23.

    Zeng, C. & Binding, C. The effect of mineral sediments on satellite chlorophyll-a retrievals from line-height algorithms using red and near-infrared bands. Remote Sens. 11, 2306 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Mikkelsen, O. A. Variation in the projected surface area of suspended particles: Implications for remote sensing assessment of TSM. Remote Sens. Environ. 79, 23–29 (2002).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Dekker, A., Vos, R. & Peters, S. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 268, 197–214 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Doxaran, D., Froidefond, J.-M., Lavender, S. & Castaing, P. Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 81, 149–161 (2002).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Koponen, S., Pulliainen, J., Kallio, K. & Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 79, 51–59 (2002).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Liu, J. P. et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Cont. Shelf Res. 26, 2141–2156 (2006).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Sterckx, S., Knaeps, E., Bollen, M., Trouw, K. & Houthuys, R. Retrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt estuary at different stages in the tidal cycle. Mar. Geod. 30, 97–108 (2007).

    Article 

    Google Scholar 

  • 30.

    Oyama, Y., Matsushita, B., Fukushima, T., Matsushige, K. & Imai, A. Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS J. Photogramm. Remote Sens. 64, 73–85 (2009).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Tarrant, P., Amacher, J. & Neuer, S. Assessing the potential of Medium‐Resolution Imaging Spectrometer (MERIS) and Moderate‐Resolution Imaging Spectroradiometer (MODIS) data for monitoring total suspended matter in small and intermediate sized lakes and reservoirs. Wat. Resour. Res. 46, W09532 (2010).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Nechad, B., Ruddick, K. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Chen, S., Huang, W., Chen, W. & Chen, X. An enhanced MODIS remote sensing model for detecting rainfall effects on sediment plume in the coastal waters of Apalachicola Bay. Mar. Environ. Res. 72, 265–272 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K. & Sterckx, S. In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sens. Environ. 120, 133–144 (2012).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Long, C. M. & Pavelsky, T. M. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 129, 197–209 (2013).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A. & Morabito, G. Optical remote sensing of lakes: an overview on Lake Maggiore. J. Limnol. 73, 201–214 (2014).

    Google Scholar 

  • 37.

    Feng, L., Hu, C., Chen, X. & Song, Q. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 140, 779–788 (2014).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Dorji, P. & Fearns, P. A quantitative comparison of total suspended sediment algorithms: a case study of the last decade for MODIS and Landsat-based sensors. Remote Sens. 8, 810 (2016).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Dogliotti, A. I., Ruddick, K., Nechad, B., Doxaran, D. & Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 156, 157–168 (2015).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Han, B. et al. Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters. Remote Sens. 8, 211 (2016).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Yu, X. et al. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 235, 111491 (2019).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Zhang, X. On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China. Int. J. Remote Sens. 19, 11–20 (1998).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Vahtmäe, E., Kutser, T., Martin, G. & Kotta, J. Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study. Remote Sens. Environ. 101, 342–351 (2006).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Dogan, O. K., Akyurek, Z. & Beklioglu, M. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data. J. Environ. Manage. 90, 2138–2143 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Yuan, L. & Zhang, L.-Q. Mapping large-scale distribution of submerged aquatic vegetation coverage using remote sensing. Ecol. Inform. 3, 245–251 (2008).

    Article 

    Google Scholar 

  • 46.

    Yadav, S. et al. A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa. Remote Sens. 9, 966 (2017).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Pu, R., Bell, S., Baggett, L., Meyer, C. & Zhao, Y. Discrimination of seagrass species and cover classes with in situ hyperspectral data. J. Coast. Res. 28, 1330–1344 (2012).

    Article 

    Google Scholar 

  • 48.

    Visser, F., Wallis, C. & Sinnott, A. M. Optical remote sensing of submerged aquatic vegetation: opportunities for shallow clearwater streams. Limnologica 43, 388–398 (2013).

    Article 

    Google Scholar 

  • 49.

    Watanabe, F. S. Y., Imai, N. N., Alcântara, E. H., da Silva Rotta, L. H. & Utsumi, A. G. Signal classification of submerged aquatic vegetation based on the hemispherical–conical reflectance factor spectrum shape in the yellow and red regions. Remote Sens. 5, 1856–1874 (2013).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Giardino, C. et al. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens. Environ. 157, 48–57 (2015).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Oyama, Y., Matsushita, B. & Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 157, 35–47 (2015).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Santos, M. J., Anderson, L. W. & Ustin, S. L. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biol. Invasions 13, 443–457 (2011).

    Article 

    Google Scholar 

  • 53.

    Luo, J. et al. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 60, 503–513 (2016).

    Article 

    Google Scholar 

  • 54.

    Hou, X., Feng, L., Chen, X. & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS J. Photogramm. Remote Sens. 141, 148–160 (2018).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Brooks, C. N., Grimm, A. G., Marcarelli, A. M. & Dobson, R. J. Multiscale collection and analysis of submerged aquatic vegetation spectral profiles for Eurasian watermilfoil detection. J. Appl. Remote Sens. 13, 037501 (2019).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Fritz, C., Kuhwald, K., Schneider, T., Geist, J. & Oppelt, N. Sentinel-2 for mapping the spatio-temporal development of submerged aquatic vegetation at Lake Starnberg (Germany). J. Limnol. 78, 71–91 (2019).

    Article 

    Google Scholar 

  • 57.

    Ghirardi, N. et al. Spatiotemporal dynamics of submerged aquatic vegetation in a deep lake from Sentinel-2 data. Water 11, 563 (2019).

    Article 

    Google Scholar 

  • 58.

    Niroumand-Jadidi, M., Pahlevan, N. & Vitti, A. Mapping substrate types and compositions in shallow streams. Remote Sens. 11, 262 (2019).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Wilson, K. L., Skinner, M. A. & Lotze, H. K. Eelgrass (Zostera marina) and benthic habitat mapping in Atlantic Canada using high-resolution SPOT 6/7 satellite imagery. Estuar. Coast. Shelf Sci. 226, 106292 (2019).

    Article 

    Google Scholar 

  • 60.

    Niemeier, P. E. & Hubert, W. A. The 85-year history of the aquatic macrophyte species composition in a eutrophic prairie lake (United States). Aquat. Bot. 25, 83–89 (1986).

    Article 

    Google Scholar 

  • 61.

    Toshner, S. & Region-Brule, N. Fishery Survey–Middle Eau Claire Lake Bayfield County, 2004–2005. Report WBIC 2742100 (2006).

  • 62.

    Depew, D. C., Houben, A. J., Ozersky, T., Hecky, R. E. & Guildford, S. J. Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency. J. Great Lakes Res. 37, 72–82 (2011).

    Article 

    Google Scholar 

  • 63.

    Vicencio, E. J. M. & Buot, I. E., Jr. Aquatic weed flora on the Southwest Lakeside of Laguna De Bay. J Wetl Biodivers 7, 75–90 (2017).

    Google Scholar 

  • 64.

    Bond, W. & Roberts, M. The colonization of Cabora Bassa, Moçambique, a new man-made lake, by floating aquatic macrophytes. Hydrobiologia 60, 243–259 (1978).

    Article 

    Google Scholar 

  • 65.

    Istvánovics, V., Honti, M., Kovács, Á. & Osztoics, A. Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungary). Aquat. Bot. 88, 317–330 (2008).

    Article 

    Google Scholar 

  • 66.

    French, J. R. P. III Effect of submersed aquatic macrophytes on resource partitioning in yearling rock bass (Ambloplites rupestris) and pumpkinseeds (Lepomis gibbosus) in Lake St. Clair. J. Great Lakes Res. 14, 291–300 (1988).

    Article 

    Google Scholar 

  • 67.

    Balesic, H. Comparative ecology of four species of darters (Etheostominae) in Lake Dauphin and its tributary, the Valley River. MSc thesis, Univ. of Manitoba (1971).

  • 68.

    Li, R., Zhang, Q.-Z., Jiang, Y.-B., Zhang, L. & Shao, X.-M. Species diversity of plant communities of Xingkai Lake wetlands under different levels of disturbance. Wetland Science 9, 179–184 (2011).

    Google Scholar 

  • 69.

    Liu, W., Deng, W., Wang, G., Li, A. & Zhou, J. Aquatic macrophyte status and variation characteristics in the past 50 years in Hongzehu Lake. J. Hydroecol 2, 1–8 (2009).

    Google Scholar 

  • 70.

    Shengzhao, Z. Aquatic vegetation in Hongze Lake. J. Lake Sci. 1, 63–70 (1992).

    Article 

    Google Scholar 

  • 71.

    Ward, J. & Talbot, J. Distribution of aquatic macrophytes in Lake Alexandrina, New Zealand. N. Z. J. Mar. Freshw. Res. 18, 211–220 (1984).

    Article 

    Google Scholar 

  • 72.

    Wang, S. & Dou, H. Chinese Lake Catalogues (Science Press, 1998).

  • 73.

    Havens, K. E., Fox, D., Gornak, S. & Hanlon, C. Aquatic vegetation and largemouth bass population responses to water-level variations in Lake Okeechobee, Florida (USA). Hydrobiologia 539, 225–237 (2005).

    Article 

    Google Scholar 

  • 74.

    García, M. et al. Heavy metals in aquatic plants and their relationship to concentrations in surface water, groundwater and sediments-A case study of Poopó basin, Bolivia. Rev. Boliv. Quím. 22, 11–18 (2005).

    Google Scholar 

  • 75.

    Fang, C. et al. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) algorithm. J. Environ. Inform. 34, 108–122 (2018).

    Google Scholar 

  • 76.

    Chen, Y. Studies on the potamogetonaceae in Qinghai Lake. Acta Hydrobiol. Sin. 11, 228–235 (1987).

    Google Scholar 

  • 77.

    Pen, M. Vegetation types and distributions around Gyaring Lake and Ngoring Lake. Acta Biol. Plateau Sin. 7, 71–79 (1987).

    Google Scholar 

  • 78.

    Li, W. Study on aquatic vegetation in Wulungu Lake, Xinjiang. Oceanol. Limnol. Sin. 24, 100–108 (1993).

    Google Scholar 

  • 79.

    Machena, C. Zonation of submerged macrophyte vegetation in Lake Kariba, Zimbabwe and its ecological interpretation. Vegetatio 73, 111–119 (1988).

    Article 

    Google Scholar 

  • 80.

    Aladin, N., Filippov, A., Plotnikov, I., Orlova, M. & Williams, W. Changes in the structure and function of biological communities in the Aral Sea, with particular reference to the northern part (Small Aral Sea), 1985–1994: a review. Int. J. Salt Lake Res. 7, 301–343 (1998).

    Google Scholar 

  • 81.

    Gabriel, A. O. & Bodensteiner, L. R. Impacts of riprap on wetland shorelines, upper Winnebago pool lakes, Wisconsin. Wetlands 32, 105–117 (2012).

    Article 

    Google Scholar 

  • 82.

    Badzinski, S. S., Ankney, C. D. & Petrie, S. A. in Limnology and Aquatic Birds 195–211 (Springer, 2006).

  • 83.

    Chepinoga, V. V., Bergmeier, E., Rosbakh, S. A. & Fleckenstein, K. M. Classification of aquatic vegetation (Potametea) in Baikal Siberia, Russia, and its diversity in a northern Eurasian context. Phytocoenologia 43, 127–167 (2013).

    Article 

    Google Scholar 

  • 84.

    Jaikumar, M., Chellaiyan, D., Kanagu, L., Kumar, P. S. & Stella, C. Distribution and succession of aquatic macrophytes in Chilka Lake-India. J. Ecol. Nat. Environ. 3, 499–508 (2011).

    Google Scholar 

  • 85.

    Krivonogov, S. K. et al. Regional to local environmental changes in southern Western Siberia: evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeogr. Palaeoclimatol. Palaeoecol. 331–332, 177–193 (2012).

    Article 

    Google Scholar 

  • 86.

    Romanova, S. & Kazangapova, N. Theory and Practice of Selfpurification Capacities of Natural Water in Kazakhstan. Technical Report (National Academy of Sciences of the Republic of Kazakhstan, 2018).

  • 87.

    Villamagna, A. M., Murphy, B. R. & Karpanty, S. M. Community-level waterbird responses to water hyacinth (Eichhornia crassipes). Invasive Plant Sci. Manag. 5, 353–362 (2012).

    Article 

    Google Scholar 

  • 88.

    Imentai, A., Thevs, N., Schmidt, S., Nurtazin, S. & Salmurzauli, R. Vegetation, fauna, and biodiversity of the Ile delta and southern Lake Balkhash—a review. J. Great Lakes Res. 41, 688–696 (2015).

    Article 

    Google Scholar 

  • 89.

    Barrientos, C. A. Fish Abundance and Community Composition in Native and Non-Native Littoral Aquatic Plants at Lake Izabal, Guatemala. MSc thesis, Univ. of Florida (2005).

  • 90.

    Tehranchi, M., Shafiei, A. D. & Shaghaghi, S. Studying solutions of development of tourism in Urmia Lake based on SWOT model. Adv. Environ. Biol. 2013, 4505–4512 (2013).

    Google Scholar 

  • 91.

    Davies, W. D. Lake Nicaragua fishery resources in Investigations of the ichthyofauna of Nicaraguan Lakes (ed. Thorson, T. B.) 16 (Univ. of Nebraska Lincoln, 1976).

  • 92.

    Cheruiyot, E. et al. Evaluating MERIS-based aquatic vegetation mapping in Lake Victoria. Remote Sens. 6, 7762–7782 (2014).

    ADS 
    Article 

    Google Scholar 

  • 93.

    Heblinski, J. et al. High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment. Hydrobiologia 661, 97–111 (2011).

    Article 

    Google Scholar 

  • 94.

    Beklioglu, M., Altinayar, G. & Tan, C. O. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Arch. Hydrobiol. 166, 535–556 (2006).

    Article 

    Google Scholar 

  • 95.

    Green, J. in The Nile (ed. Dumont H. J.) 263–286 (Springer, 2009).

  • 96.

    Kalman, L. S. & Peltzer, G. R. Simulation of Landsat Thematic Mapper imagery using AVIRIS hyperspectral imagery. In 4th Annual JPL Airborne Geoscience Workshop (1993).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *