Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).
Google Scholar
Luedtke, J. A. et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308–314 (2023).
Google Scholar
Pottier, P. et al. A comprehensive database of amphibian heat tolerance. Sci. Data 9, 600 (2022).
Google Scholar
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Google Scholar
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
Google Scholar
Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
Google Scholar
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Google Scholar
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Angilletta, M. J. Thermal Adaptation: a Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).
Mi, C. et al. Global Protected Areas as refuges for amphibians and reptiles under climate change. Nat. Commun. 14, 1389 (2023).
Google Scholar
Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).
Google Scholar
Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).
Google Scholar
Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).
Google Scholar
Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504 (2023).
Google Scholar
Nesi, P., Luiselli, L. M. & Vignoli, L. “Heaven” of data deficient species: the conservation status of the endemic amphibian fauna of Vietnam. Diversity 15, 872 (2023).
Google Scholar
Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).
Google Scholar
Murali, G., Iwamura, T., Meiri, S. & Roll, U. Future temperature extremes threaten land vertebrates. Nature 615, 461–467 (2023).
Google Scholar
Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).
Google Scholar
Anderson, R. O., White, C. R., Chapple, D. G. & Kearney, M. R. A hierarchical approach to understanding physiological associations with climate. Glob. Ecol. Biogeogr. 31, 332–346 (2022).
Google Scholar
Briscoe, N. J. et al. Mechanistic forecasts of species responses to climate change: the promise of biophysical ecology. Glob. Change Biol. 29, 1451–1470 (2023).
Google Scholar
Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).
Google Scholar
Duarte, H. et al. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob. Change Biol. 18, 412–421 (2012).
Google Scholar
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Google Scholar
Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2 (IPCC, 2021).
Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).
Google Scholar
Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).
Google Scholar
Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
Google Scholar
van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214 (2021).
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
Google Scholar
Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).
Google Scholar
Pottier, P. et al. Developmental plasticity in thermal tolerance: ontogenetic variation, persistence, and future directions. Ecol. Lett. 25, 2245–2268 (2022).
Google Scholar
Denny, M. W. in Air and Water: The Biology and Physics of Life’s Media 145–173 (Princeton Univ. Press, 1993).
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).
Google Scholar
Stark, G., Ma, L., Zeng, Z.-G., Du, W.-G. & Levy, O. Cool shade and not-so-cool shade: how habitat loss may accelerate thermal stress under current and future climate. Glob. Change Biol. 29, 6201–6216 (2023).
Google Scholar
Nowakowski, A. J. et al. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conserv. Biol. 31, 96–105 (2017).
Google Scholar
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
Google Scholar
McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008).
Google Scholar
Greenberg, D. A. & Palen, W. J. Hydrothermal physiology and climate vulnerability in amphibians. Proc. R. Soc. B 288, 20202273 (2021).
Google Scholar
Cheng, C.-T. et al. Open habitats increase vulnerability of amphibian tadpoles to climate warming across latitude. Glob. Ecol. Biogeogr. 32, 83–94 (2023).
Google Scholar
Wu, N. C. et al. Global exposure risk of frogs to increasing environmental dryness. Nat. Clim. Change 14, 1314–1322 (2024).
Kearney, M. R. Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol. Lett. 16, 1470–1479 (2013).
Google Scholar
Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).
Google Scholar
Enriquez-Urzelai, U., Nicieza, A. G., Montori, A., Llorente, G. A. & Urrutia, M. B. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. Oikos 2022, e08566 (2022).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
Wang, W. W.-Y. & Gunderson, A. R. The physiological and evolutionary ecology of sperm thermal performance. Front. Physiol. 13, 754830 (2022).
Google Scholar
Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
Google Scholar
Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 611, 93–98 (2022).
Google Scholar
Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
Google Scholar
Garcia, R. A., Allen, J. L. & Clusella-Trullas, S. Rethinking the scale and formulation of indices assessing organism vulnerability to warmer habitats. Ecography 42, 1024–1036 (2019).
Google Scholar
Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).
Google Scholar
Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).
Google Scholar
Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. Natl Acad. Sci. USA 117, 33365–33372 (2020).
Google Scholar
von May, R. et al. Thermal physiological traits in tropical lowland amphibians: vulnerability to climate warming and cooling. PLoS ONE 14, e0219759 (2019).
Google Scholar
Bovo, R. P. et al. Beyond Janzen’s hypothesis: how amphibians that climb tropical mountains respond to climate variation. Integr. Org. Biol. 5, obad009 (2023).
Google Scholar
Arenas, M., Ray, N., Currat, M. & Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 29, 207–218 (2012).
Google Scholar
Rogan, J. E. et al. Genetic and demographic consequences of range contraction patterns during biological annihilation. Sci. Rep. 13, 1691 (2023).
Google Scholar
Blaustein, A. R. et al. Direct and indirect effects of climate change on amphibian populations. Diversity 2, 281–313 (2010).
Google Scholar
Nowakowski, J. A. et al. Protected areas slow declines unevenly across the tetrapod tree of life. Nature 622, 101–106 (2023).
Google Scholar
Hocking, D. & Babbitt, K. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
Google Scholar
McNutt, M. K. et al. Transparency in authors’ contributions and responsibilities to promote integrity in scientific publication. Proc. Natl Acad. Sci. USA 115, 2557–2560 (2018).
Google Scholar
Nakagawa, S. et al. Method reporting with initials for transparency (MeRIT) promotes more granularity and accountability for author contributions. Nat. Commun. 14, 1788 (2023).
Google Scholar
Pottier, P. et al. Title, abstract and keywords: a practical guide to maximise the visibility and impact of academic papers. Proc. R. Soc. B 291, 20241222 (2024).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
South, A., Michael, S. & Massicotte, P. rnaturalearthhires: high resolution world vector map data from Natural Earth used in rnaturalearth. R package version 0.2.1 (2022).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
Google Scholar
Wickham, H. ggplot2: elegant graphics for data analysis. R package version 3.5.1 (2011).
Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).
Google Scholar
The IUCN Red List of Threatened Species (IUCN, 2021); www.iucnredlist.org.
Johnson, J. V. et al. What drives the evolution of body size in ectotherms? A global analysis across the amphibian tree of life. Glob. Ecol. Biogeogr. 32, 1311–1322 (2023).
Google Scholar
Santini, L., Benítez-López, A., Ficetola, G. F. & Huijbregts, M. A. J. Length–mass allometries in amphibians. Integr. Zool. 13, 36–45 (2018).
Google Scholar
van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
Google Scholar
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
Google Scholar
Speidel, M., Drechsler, J. & Jolani, S. R Package Hmi: a convenient tool for hierarchical multiple imputation and beyond (2018); www.econstor.eu/handle/10419/182156.
Callaghan, C. T., Nakagawa, S. & Cornwell, W. K. Global abundance estimates for 9,700 bird species. Proc. Natl Acad. Sci. USA 118, e2023170118 (2021).
Google Scholar
Austin, P. C. & van Buuren, S. The effect of high prevalence of missing data on estimation of the coefficients of a logistic regression model when using multiple imputation. BMC Med. Res. Methodol. 22, 196 (2022).
Google Scholar
Madley-Dowd, P., Hughes, R., Tilling, K. & Heron, J. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 110, 63–73 (2019).
Google Scholar
Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. J. Zool. 75, 1553–1560 (1997).
Google Scholar
Camacho, A. & Rusch, T. W. Methods and pitfalls of measuring thermal preference and tolerance in lizards. J. Therm. Biol. 68, 63–72 (2017).
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).
Google Scholar
Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).
Google Scholar
Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the ectotherm and dynamic energy budget models. Ecography 43, 85–96 (2020).
Google Scholar
Pincebourde, S. & Suppo, C. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integr. Comp. Biol. 56, 85–97 (2016).
Google Scholar
Tracy, C. R., Christian, K. A. & Tracy, C. R. Not just small, wet, and cold: effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology 91, 1477–1484 (2010).
Google Scholar
Köhler, A. et al. Staying warm or moist? Operative temperature and thermal preferences of common frogs (Rana temporaria), and effects on locomotion. Herpetol. J. 21, 17–26 (2011).
Navas, C. A., Carvajalino-Fernández, J. M., Saboyá-Acosta, L. P., Rueda-Solano, L. A. & Carvajalino-Fernández, M. A. The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Funct. Ecol. 27, 1145–1154 (2013).
Google Scholar
Barton, M. G., Clusella-Trullas, S. & Terblanche, J. S. Spatial scale, topography and thermoregulatory behaviour interact when modelling species’ thermal niches. Ecography 42, 376–389 (2019).
Google Scholar
García-García, A. et al. Soil heat extremes can outpace air temperature extremes. Nat. Clim. Change 13, 1237–1241 (2023).
Google Scholar
Davies-Colley, R. J., Payne, G. W. & van Elswijk, M. Microclimate gradients across a forest edge. N. Z. J. Ecol. 24, 111–121 (2000).
Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics (Springer, 2000).
Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol. Evol. 10, 280–290 (2019).
Google Scholar
Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
Google Scholar
Tracy, C. R. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol. Monogr. 46, 293–326 (1976).
Google Scholar
Enriquez-Urzelai, U., Kearney, M. R., Nicieza, A. G. & Tingley, R. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Glob. Change Biol. 25, 2633–2647 (2019).
Google Scholar
Kearney, M. R., Munns, S. L., Moore, D., Malishev, M. & Bull, C. M. Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecol. Monogr. 88, 672–693 (2018).
Google Scholar
Kearney, M. R., Porter, W. P. & Huey, R. B. Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods Ecol. Evol. 12, 458–467 (2021).
Google Scholar
Kearney, M. et al. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography 31, 423–434 (2008).
Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar
Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).
Google Scholar
Layne, J. R. & Claussen, D. L. The time courses of CTMax and CTMin acclimation in the salamander Desmognathus fuscus. J. Therm. Biol. 7, 139–141 (1982).
Google Scholar
Turriago, J. L., Tejedo, M., Hoyos, J. M., Camacho, A. & Bernal, M. H. The time course of acclimation of critical thermal maxima is modulated by the magnitude of temperature change and thermal daily fluctuations. J. Therm. Biol. 114, 103545 (2023).
Google Scholar
Dallas, J. & Warne, R. W. Heat hardening of a larval amphibian is dependent on acclimation period and temperature. J. Exp. Zool. A 339, 339–345 (2023).
Google Scholar
Ruthsatz, K. et al. Acclimation capacity to global warming of amphibians and freshwater fishes: drivers, patterns, and data limitations. Glob. Change Biol. 30, e17318 (2024).
Google Scholar
Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).
Google Scholar
Wood, S. & Scheipl, F. gamm4: generalized additive mixed models using mgcv and lme4 (2014).
Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
Google Scholar
Lara-Resendiz, R. A. & Luja, V. H. Body temperatures of some amphibians from Nayarit, Mexico. Rev. Mex. Biodivers. 89, 577–581 (2018).
Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).
Google Scholar
Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).
Google Scholar
Agudelo-Cantero, G. A. & Navas, C. A. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J. Therm. Biol. 82, 43–51 (2019).
Google Scholar
Alveal Riquelme, N. Relaciones Entre la Fisiología Térmica y las Características Bioclimáticas de Rhinella spinulosa (Anura: Bufonidae) en Chile a Través Del Enlace Mecanicista de Nicho Térmico. MSc thesis, Univ. Concepción (2015).
Alves, M. Tolerância Térmica em Espécies de Anuros Neotropicais do Gênero Dendropsophus Fitzinger 1843 e Efeito da Temperatura na Resposta à Predação. MSc thesis, Univ. Estadual de Santa Cruz (2016).
Anderson, R. C. O. & Andrade, D. V. Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecol. Evol. 7, 9066–9075 (2017).
Google Scholar
Aponte Gutiérrez, A. Endurecimiento Térmico en Pristimantis medemi (Anura: Craugastoridae), en Coberturas Boscosas del Municipio de Villavicencio (Meta). MSc thesis, Univ. Nacional de Colombia (2020).
Arrigada García, K. Conductas Térmica en dos Poblaciones de Batrachyla taeniata Provenientes de la Localidad de Ucúquer en la Región de O’Higgins y de la Localidad de Hualpén en la Región del Bío-Bío. BSc thesis, Univ. de Concepción (2019).
Azambuja, G., Martins, I. K., Franco, J. L. & Santos, T. Gdos Effects of mancozeb on heat shock protein 70 (HSP70) and its relationship with the thermal physiology of Physalaemus henselii (Peters, 1872) tadpoles (Anura: Leptodactylidae). J. Therm. Biol. 98, 102911 (2021).
Google Scholar
Bacigalupe, L. D. et al. Natural selection on plasticity of thermal traits in a highly seasonal environment. Evol. Appl. 11, 2004–2013 (2018).
Google Scholar
Barria, A. M. & Bacigalupe, L. D. Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog. J. Therm. Biol. 69, 254–260 (2017).
Google Scholar
Beltrán, I., Ramírez-Castañeda, V., Rodríguez-López, C., Lasso, E. & Amézquita, A. Dealing with hot rocky environments: critical thermal maxima and locomotor performance in Leptodactylus lithonaetes (Anura: Leptodactylidae). Herpetol. J. 29, 155–161 (2019).
Google Scholar
Berkhouse, C. & Fries, J. Critical thermal maxima of juvenile and adult San Marcos salamanders (Eurycea nana). Southwest. Nat. 40, 430–434 (1995).
Blem, C. R., Ragan, C. A. & Scott, L. S. The thermal physiology of two sympatric treefrogs Hyla cinerea and Hyla chrysoscelis (Anura; Hylidae). Comp. Biochem. Physiol. A 85, 563–570 (1986).
Google Scholar
Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94, 102744 (2020).
Google Scholar
Bovo, R. P. Fisiologia Térmica e Balanço Hídrico em Anfíbios Anuros. PhD thesis, Univ. Estadual Paulista (2015).
Brattstrom, B. H. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35, 69–103 (1970).
Google Scholar
Brattstrom, B. H. & Regal, P. Rate of thermal acclimation in the Mexican salamander Chiropterotriton. Copeia 1965, 514–515 (1965).
Google Scholar
Brattstrom, B. H. A preliminary review of the thermal requirements of amphibians. Ecology 44, 238–255 (1963).
Google Scholar
Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).
Google Scholar
Brown, H. A. The heat resistance of some anuran tadpoles (Hylidae and Pelobatidae). Copeia 1969, 138 (1969).
Google Scholar
Burke, E. M. & Pough, F. H. The role of fatigue in temperature resistance of salamanders. J. Therm. Biol. 1, 163–167 (1976).
Google Scholar
Burrowes, P. A., Navas, C. A., Jiménez-Robles, O., Delgado, P. & De La Riva, I. Climatic heterogeneity in the Bolivian Andes: are frogs trapped? South Am. J. Herpetol. 18, 1–12 (2020).
Google Scholar
Bury, R. B. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management. Appl. Herpetol. 5, 63–74 (2008).
Google Scholar
Castellanos García, L. A. Days of Futures Past: Integrating Physiology, Microenvironments, and Biogeographic History to Predict Response of Frogs in Neotropical Dry-Forest to Global Warming. MSc thesis, Univ. de los Andes (2017).
Castro, B. Influence of Environment on Thermal Ecology of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the eastern Andes of Colombia. MSc thesis, Univ. de los Andes (2019).
Catenazzi, A., Lehr, E. & Vredenburg, V. T. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Conserv. Biol. 28, 509–517 (2014).
Google Scholar
Chang, L.-W. Heat Tolerance and its Plasticity in Larval Bufo bankorensis From Different Altitudes. MSc thesis, National Cheng Kung Univ. (2002).
Chavez Landi, P. A. Fisiología Térmica de un Depredador Dasythemis sp. (Odonata: Libellulidae) y su Presa Hypsiboas pellucens (Anura: Hylidae) y sus Posibles Implicaciones Frente al Cambio Climático. BSc thesis, Pontificia Univ. Católica Del Ecuador (2017).
Chen, T.-C., Kam, Y.-C. & Lin, Y.-S. Thermal physiology and reproductive phenology of Buergeria japonica (Rhacophoridae) breeding in a stream and a geothermal hotspring in Taiwan. Zool. Sci. 18, 591–596 (2001).
Google Scholar
Cheng, C.-B. A Study of Warming Tolerance and Thermal Acclimation Capacity of Tadpoles in Taiwan. MSc thesis, Tunghai Univ. (2017).
Cheng, Y.-J. Effect of Salinity on the Critical Thermal Maximum of Tadpoles Living in Brackish Water. MSC thesis, Tunghai Univ. (2017).
Christian, K. A., Nunez, F., Clos, L. & Diaz, L. Thermal relations of some tropical frogs along an altitudinal gradient. Biotropica 20, 236–239 (1988).
Google Scholar
Claussen, D. L. The thermal relations of the tailed frog, Ascaphus truei, and the Pacific treefrog, Hyla regilla. Comp. Biochem. Physiol. A 44, 137–153 (1973).
Google Scholar
Claussen, D. L. Thermal acclimation in ambystomatid salamanders. Comp. Biochem. Physiol. A 58, 333–340 (1977).
Google Scholar
Contreras Cisneros, J. Temperatura Crítica Máxima, Tolerancia al frío y Termopreferendum del Tritón Del Montseny (Calotriton arnoldii). MSc thesis, Univ. de Barcelona (2019).
Contreras Oñate, S. Posible Efecto de las Temperaturas de Aclimatación Sobre las Respuestas Térmicas en Temperaturas Críticas Máximas (TCmás) y Mínimas (TCmín) de una Población de Batrachyla taeniata (Girard, 1955). BSc thesis, Univ. de Concepción (2016).
Cooper, R. D. & Shaffer, H. B. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (Ambystoma californiense). Mol. Ecol. 30, 987–1004 (2021).
Google Scholar
Crow, J. C., Forstner, M. R. J., Ostr, K. G. & Tomasso, J. R. The role of temperature on survival and growth of the Barton Springs salamander (Eurycea sosorum). Herpetol. Conserv. Biol. 11, 328–334 (2016).
Cupp, P. V. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica 36, 234–244 (1980).
Dabruzzi, T. F., Wygoda, M. L. & Bennett, W. A. Some like it hot: Heat tolerance of the crab-eating frog, Fejervarya cancrivora. Micronesica 43, 101–106 (2012).
Dainton, B. H. Heat tolerance and thyroid activity in developing tadpoles and juvenile adults of Xenopus laevis (Daudin). J. Therm. Biol. 16, 273–276 (1991).
Google Scholar
Daniel, N. J. J. Impact of Climate Change on Singapore Amphibians. PhD thesis, National Univ. Singapore (2013).
Davies, S. J., McGeoch, M. A. & Clusella-Trullas, S. Plasticity of thermal tolerance and metabolism but not water loss in an invasive reed frog. Comp. Biochem. Physiol. A 189, 11–20 (2015).
Google Scholar
de Oliviera Anderson, R. C., Bovo, R. P. & Andrade, D. V. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. J. Therm. Biol. 74, 77–83 (2018).
Google Scholar
de Vlaming, V. L. & Bury, R. B. Thermal selection in tadpoles of the tailed-frog, Ascaphus truei. J. Herpetol. 4, 179–189 (1970).
Google Scholar
Delson, J. & Whitford, W. G. Critical thermal maxima in several life history stages in desert and montane populations of Ambystoma tigrinum. Herpetologica 29, 352–355 (1973).
Duarte, H. S. A Comparative Study of the Thermal Tolerance of Tadpoles of Iberian anurans. MSc thesis, Univ. de Lisboa (2011).
Dunlap, D. Evidence for a daily rhythm of heat resistance in cricket frogs, Acris crepitans. Copeia 1969, 852–854 (1969).
Google Scholar
Dunlap, D. G. Critical thermal maximum as a function of temperature of acclimation in two species of Hylid frogs. Physiol. Zool. 41, 432–439 (1968).
Google Scholar
Elwood, J. R. L. Variation in hsp70 Levels and Thermotolerance Among Terrestrial Salamanders of the Plethodon glutinosus Complex. PhD thesis, Drexel Univ. (2003).
Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).
Google Scholar
Erskine, D. J. & Hutchison, V. H. Reduced thermal tolerance in an amphibian treated with melatonin. J. Therm. Biol. 7, 121–123 (1982).
Google Scholar
Escobar Serrano, D. Acclimation Scope of the Critical Thermal Limits in Agalychnis spurrelli (Hylidae) and Gastrotheca pseustes (Hemiphractidae) and Their Implications Under Climate Change Scenarios. BSc thesis, Pontificia Univ. Católica Del Ecuador (2016).
Fan, X., Lei, H. & Lin, Z. Ontogenetic shifts in selected body temperature and thermal tolerance of the tiger frog, Hoplobatrachus chinensis. Acta Ecol. Sin. 32, 5574–5580 (2012).
Google Scholar
Fan, X. L., Lin, Z. H. & Scheffers, B. R. Physiological, developmental, and behavioral plasticity in response to thermal acclimation. J. Therm. Biol. 97, 102866 (2021).
Google Scholar
Fernández-Loras, A. et al. Infection with Batrachochytrium dendrobatidis lowers heat tolerance of tadpole hosts and cannot be cleared by brief exposure to CTmax. PLoS ONE 14, e0216090 (2019).
Google Scholar
Floyd, R. B. Ontogenetic change in the temperature tolerance of larval Bufo marinus (Anura: Bufonidae). Comp. Biochem. Physiol. A 75, 267–271 (1983).
Google Scholar
Floyd, R. B. Effects of photoperiod and starvation on the temperature tolerance of larvae of the giant toad, Bufo marinus. Copeia 1985, 625–631 (1985).
Google Scholar
Fong, S.-T. Thermal Tolerance of Adult Asiatic Painted Frog Kaloula pulchra from Different Populations. MSc thesis, National Univ. Tainan (2014).
Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).
Google Scholar
Frost, J. S. & Martin, E. W. A comparison of distribution and high temperature tolerance in Bufo americanus and Bufo woodhousii fowleri. Copeia 1971, 750 (1971).
Google Scholar
Gatz, A. J. Critical thermal maxima of Ambystoma maculatum (Shaw) and Ambystoma jeffersonianum (Green) in relation to time of breeding. Herpetologica 27, 157–160 (1971).
Gatz, A. J. Intraspecific variations in critical thermal maxima of Ambystoma maculatum. Herpetologica 29, 264–268 (1973).
Geise, W. & Linsenmair, K. E. Adaptations of the reed frog Hyperolius viridiflavus to its arid environment—IV. Oecological significance of water economy with comments on thermoregulation and energy allocation. Oecologia 77, 327–338 (1988).
Google Scholar
González-del-Pliego, P. et al. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. J. Anim. Ecol. 89, 2451–2460 (2020).
Google Scholar
Gouveia, S. F. et al. Climatic niche at physiological and macroecological scales: The thermal tolerance–geographical range interface and niche dimensionality. Glob. Ecol. Biogeogr. 23, 446–456 (2014).
Google Scholar
Gray, R. Lack of physiological differentiation in three color morphs of the cricket frog (Acris crepitans) in Illinois. Trans. Ill. State Acad. Sci. 70, 73–79 (1977).
Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).
Google Scholar
Guevara-Molina, E. C., Gomes, F. R. & Camacho, A. Effects of dehydration on thermoregulatory behavior and thermal tolerance limits of Rana catesbeiana (Shaw, 1802). J. Therm. Biol. 93, 102721 (2020).
Google Scholar
Gutiérrez Pesquera, L. Una Valoración Macrofisiológica de la Vulnerabilidad al Calentamiento Global. Análisis de los Límites de Tolerancia Térmica en Comunidades de Anfibios en Gradientes Latitudinales y Altitudinales. MSc thesis, Pontificia Univ. Católica Del Ecuador (2015).
Gutiérrez Pesquera, M. Thermal Tolerance Across Latitudinal and Altitudinal Gradients in Tadpoles. PhD thesis, Univ. de Sevilla (2016).
Gutiérrez-Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).
Google Scholar
Gvoždík, L., Puky, M. & Šugerková, M. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol. J. Linn. Soc. 90, 627–636 (2007).
Google Scholar
Heatwole, H., De Austin, S. B. & Herrero, R. Heat tolerances of tadpoles of two species of tropical anurans. Comp. Biochem. Physiol. 27, 807–815 (1968).
Google Scholar
Heatwole, H., Mercado, N. & Ortiz, E. Comparison of critical thermal maxima of two species of Puerto Rican frogs of the genus Eleutherodactylus. Physiol. Zool. 38, 1–8 (1965).
Google Scholar
Holzman, N. & McManus, J. J. Effects of acclimation on metabolic rate and thermal tolerance in the carpenter frog, Rana vergatipes. Comp. Biochem. Physiol. A 45, 833–842 (1973).
Google Scholar
Hoppe, D. M. Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica 34, 318–321 (1978).
Hou, P.-C. Thermal Tolerance and Preference in the Adult Amphibians from Different Altitudinal LTER Sites. MSc thesis, National Cheng Kung Univ. (2003).
Howard, J. H., Wallace, R. L. & Stauffer, J. R. Jr Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. J. Herpetol. 17, 400–402 (1983).
Google Scholar
Hutchison, V. H. & Ritchart, J. P. Annual cycle of thermal tolerance in the salamander, Necturus maculosus. J. Herpetol. 23, 73–76 (1989).
Google Scholar
Hutchison, V. H. The distribution and ecology of the cave salamander, Eurycea lucifuga. Ecol. Monogr. 28, 2–20 (1958).
Google Scholar
Hutchison, V. H. Critical thermal maxima in salamanders. Physiol. Zool. 34, 92–125 (1961).
Google Scholar
Hutchison, V. H., Engbretson, G. & Turney, D. Thermal acclimation and tolerance in the hellbender, Cryptobranchus alleganiensis. Copeia 1973, 805–807 (1973).
Google Scholar
Hutchison, V. H. & Rowlan, S. D. Thermal acclimation and tolerance in the mudpuppy, Necturus maculosus. J. Herpetol. 9, 367–368 (1975).
Google Scholar
Jiang, S., Yu, P. & Hu, Q. A study on the critical thermal maxima of five species of salamanders of China. Acta Herpetol. Sin. 6, 56–62 (1987).
John-Alder, H. B., Morin, P. J. & Lawler, S. Thermal physiology, phenology, and distribution of tree frogs. Am. Nat. 132, 506–520 (1988).
Google Scholar
Johnson, C. R. Daily variation in the thermal tolerance of Litoria caerulea (Anura: Hylidae). Comp. Biochem. Physiol. A 40, 1109–1111 (1971).
Google Scholar
Johnson, C. R. Thermal relations and water balance in the day frog, Taudactylus diurnus, from an Australian rain forest. Aust. J. Zool. 19, 35–39 (1971).
Google Scholar
Johnson, C. R. Diel variation in the thermal tolerance of Litoria gracilenta (Anura: Hylidae). Comp. Biochem. Physiol. A 41, 727–730 (1972).
Google Scholar
Johnson, C. R. & Prine, J. E. The effects of sublethal concentrations of organophosphorus insecticides and an insect growth regulator on temperature tolerance in hydrated and dehydrated juvenile western toads, Bufo boreas. Comp. Biochem. Physiol. A 53, 147–149 (1976).
Google Scholar
Johnson, C. R. Observations on body temperatures, critical thermal maxima and tolerance to water loss in the Australian hylid, Hyla caerulea (White). Proc. R. Soc. Qld. 82, 47–50 (1970).
Johnson, C. R. Thermal relations and daily variation in the thermal tolerance in Bufo marinus. J. Herpetol. 6, 35 (1972).
Google Scholar
Johnson, C. Thermal relations in some southern and eastern Australian anurans. Proc. R. Soc. Qld. 82, 87–94 (1971).
Johnson, C. The effects of five organophosphorus insecticides on thermal stress in tadpoles of the Pacific tree frog, Hyla regilla. Zool. J. Linn. Soc. 69, 143–147 (1980).
Google Scholar
Katzenberger, M., Duarte, H., Relyea, R., Beltrán, J. F. & Tejedo, M. Variation in upper thermal tolerance among 19 species from temperate wetlands. J. Therm. Biol. 96, 102856 (2021).
Google Scholar
Katzenberger, M. et al. Swimming with predators and pesticides: how environmental stressors affect the thermal physiology of tadpoles. PLoS ONE 9, e98265 (2014).
Google Scholar
Katzenberger, M., Hammond, J., Tejedo, M. & Relyea, R. Source of environmental data and warming tolerance estimation in six species of North American larval anurans. J. Therm. Biol. 76, 171–178 (2018).
Google Scholar
Katzenberger, M. Thermal Tolerance and Sensitivity of Amphibian Larvae from Palearctic and Neotropical Communities. MSc thesis, Univ. de Lisboa (2013).
Katzenberger, M. Impact of Global warming in Holarctic and Neotropical Communities of Amphibians. PhD thesis, Univ. de Sevilla (2014).
Kern, P., Cramp, R. L. & Franklin, C. E. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. J. Exp. Biol. 217, 1246–1252 (2014).
Google Scholar
Kern, P., Cramp, R. L., Seebacher, F., Ghanizadeh Kazerouni, E. & Franklin, C. E. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits. Comp. Biochem. Physiol. A 190, 75–82 (2015).
Google Scholar
Kern, P., Cramp, R. L. & Franklin, C. E. Physiological responses of ectotherms to daily temperature variation. J. Exp. Biol. 218, 3068–3076 (2015).
Google Scholar
Komaki, S., Igawa, T., Lin, S.-M. & Sumida, M. Salinity and thermal tolerance of Japanese stream tree frog (Buergeria japonica) tadpoles from island populations. Herpetol. J. 26, 207–211 (2016).
Komaki, S., Lau, Q. & Igawa, T. Living in a Japanese onsen: field observations and physiological measurements of hot spring amphibian tadpoles, Buergeria japonica. Amphib. Reptil. 37, 311–314 (2016).
Google Scholar
Krakauer, T. Tolerance limits of the toad, Bufo marinus, in South Florida. Comp. Biochem. Physiol. 33, 15–26 (1970).
Google Scholar
Kurabayashi, A. et al. Improved transport of the model amphibian, Xenopus tropicalis, and its viable temperature for transport. Curr. Herpetol. 33, 75–87 (2014).
Google Scholar
Lau, E. T. C., Leung, K. M. Y. & Karraker, N. E. Native amphibian larvae exhibit higher upper thermal limits but lower performance than their introduced predator Gambusia affinis. J. Therm. Biol. 81, 154–161 (2019).
Google Scholar
Layne, J. R. & Claussen, D. L. Seasonal variation in the thermal acclimation of critical thermal maxima (CTMax) and minima (CTMin) in the salamander Eurycea bislineata. J. Therm. Biol. 7, 29–33 (1982).
Google Scholar
Lee, P.-T. Acidic Effect on Tadpoles Living in Container Habitats. MSc thesis Tunghai Univ. (2019).
Longhini, L. S., De Almeida Prado, C. P., Bícego, K. C., Zena, L. A. & Gargaglioni, L. H. Measuring cardiorespiratory variables on small tadpoles using a non-invasive methodology. Rev. Cubana Investig. Biomed. 38, e0185 (2019).
López Rosero, A. C. Ontogenetic Variation of Thermal Tolerance in two Anuran Species of Ecuador: Gastrotheca pseustes (Hemiphractidae) and Smilisca phaeota (Hylidae) and Their Relative Vulnerability to Environmental Temperature Change. BSc thesis, Pontificia Univ. Católica Del Ecuador (2015).
Lotshaw, D. P. Temperature adaptation and effects of thermal acclimation in Rana sylvatica and Rana catesbeiana. Comp. Biochem. Physiol. A 56, 287–294 (1977).
Google Scholar
Lu, H.-L., Wu, Q., Geng, J. & Dang, W. Swimming performance and thermal resistance of juvenile and adult newts acclimated to different temperatures. Acta Herpetol. 11, 189–195 (2016).
Lu, H. L., Geng, J., Xu, W., Ping, J. & Zhang, Y. P. Physiological response and changes in swimming performance after thermal acclimation in juvenile Chinese fire-belly newts, Cynops orientalis. Acta Ecol. Sin. 37, 1603–1610 (2017).
Madalozzo, B. Variação Latitudinal nos Limites de Tolerância e Plasticidade Térmica em Anfíbios em um Cenário de Mudanças Climáticas: Efeito dos Micro-habitats, Sazonalidade e Filogenia. PhD thesis, Univ. Federal de Santa Maria (2018).
Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).
Google Scholar
Maness, J. D. & Hutchison, V. H. Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J. Therm. Biol. 5, 225–233 (1980).
Google Scholar
Manis, M. L. & Claussen, D. L. Environmental and genetic influences on the thermal physiology of Rana sylvatica. J. Therm. Biol. 11, 31–36 (1986).
Google Scholar
Markle, T. M. & Kozak, K. H. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change. Ecol. Evol. 8, 4644–4656 (2018).
Google Scholar
Marshall, E. & Grigg, G. C. Acclimation of CTM, LD50, and rapid loss of acclimation of thermal preferendum in tadpoles of Limnodynastes peronii (Anura, Myobatrachidae). Aust. Zool. 20, 447–456 (1980).
Mathias, J. H. The Comparative Ecologies of Two Species of Amphibia (B. bufo and B. calamita) on the Ainsdale Sand Dunes National Nature Reserve. PhD thesis, Univ. Manchester (1971).
McManus, J. J. & Nellis, D. W. The critical thermal maximum of the marine toad, Bufo marinus. Caribb. J. Sci. 15, 67–70 (1975).
Menke, M. E. & Claussen, D. L. Thermal acclimation and hardening in tadpoles of the bullfrog, Rana catesbeiana. J. Therm. Biol. 7, 215–219 (1982).
Google Scholar
Merino-Viteri, A. R. The Vulnerability of Microhylid frogs Cophixalus spp., to Climate Change in the Australian Wet Tropics. PhD thesis, James Cook Univ. (2018).
Messerman, A. F. Tales of an ‘Invisible’ Life Stage: Survival and Physiology Among Terrestrial Juvenile Ambystomatid Salamanders. PhD thesis, Univ. Missouri (2019).
Meza-Parral, Y., García-Robledo, C., Pineda, E., Escobar, F. & Donnelly, M. A. Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. J. Therm. Biol. 89, 102565 (2020).
Google Scholar
Miller, K. & Packard, G. C. Critical thermal maximum: ecotypic variation between montane and piedmont chorus frogs (Pseudacris triseriata, Hylidae). Experientia 30, 355–356 (1974).
Google Scholar
Miller, K. & Packard, G. C. An altitudinal cline in critical thermal maxima of chorus frogs (Pseudacris triseriata). Am. Nat. 111, 267–277 (1977).
Google Scholar
Mueller, C. A., Bucsky, J., Korito, L. & Manzanares, S. Immediate and persistent effects of temperature on oxygen consumption and thermal tolerance in embryos and larvae of the Baja California chorus frog, Pseudacris hypochondriaca. Front. Physiol. 10, 754 (2019).
Google Scholar
Navas, C. A., Antoniazzi, M. M., Carvalho, J. E., Suzuki, H. & Jared, C. Physiological basis for diurnal activity in dispersing juvenile Bufo granulosus in the Caatinga, a Brazilian semi-arid environment. Comp. Biochem. Physiol. A 147, 647–657 (2007).
Google Scholar
Navas, C. A., Úbeda, C. A., Logares, R. & Jara, F. G. Thermal tolerances in tadpoles of three species of Patagonian anurans. South Am. J. Herpetol. 5, 89–96 (2010).
Google Scholar
Nietfeldt, J. W., Jones, S. M., Droge, D. L. & Ballinger, R. E. Rate of thermal acclimation of larval Ambystoma tigrinum. J. Herpetol. 14, 209–211 (1980).
Google Scholar
Nol, R. & Ultsch, G. R. The roles of temperature and dissolved oxygen in microhabitat selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia 1981, 645–652 (1981).
Google Scholar
Novarro, A. J. Thermal Physiology in a Widespread Lungless Salamander. PhD thesis, Univ. Maryland (2018).
Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).
Google Scholar
Orille, A. C., McWhinnie, R. B., Brady, S. P. & Raffel, T. R. Positive effects of acclimation temperature on the critical thermal maxima of Ambystoma mexicanum and Xenopus laevis. J. Herpetol. 54, 289–292 (2020).
Google Scholar
Oyamaguchi, H. M. et al. Thermal sensitivity of a Neotropical amphibian (Engystomops pustulosus) and its vulnerability to climate change. Biotropica 50, 326–337 (2018).
Google Scholar
Paez Vacas, M. I. Mechanisms of Population Divergence Along Elevational Gradients in the Tropics. PhD thesis, Colorado State Univ. (2016).
Paulson, B. K. & Hutchison, V. H. Blood changes in Bufo cognatus following acute heat stress. Comp. Biochem. Physiol. A 87, 461–466 (1987).
Google Scholar
Paulson, B. & Hutchison, V. Origin of the stimulus for muscular spasms at the critical thermal maximum in anurans. Copeia 1987, 810–813 (1987).
Google Scholar
Percino-Daniel, R. et al. Environmental heterogeneity shapes physiological traits in tropical direct-developing frogs. Ecol. Evol. 11, 6688–6702 (2021).
Google Scholar
Perotti, M. G., Bonino, M. F., Ferraro, D. & Cruz, F. B. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Zoology 127, 95–105 (2018).
Google Scholar
Pintanel, P., Tejedo, M., Almeida-Reinoso, F., Merino-Viteri, A. & Gutiérrez-Pesquera, L. M. Critical thermal limits do not vary between wild-caught and captive-bred tadpoles of Agalychnis spurrelli (Anura: Hylidae). Diversity 12, 43 (2020).
Pintanel, P., Tejedo, M., Ron, S. R., Llorente, G. A. & Merino-Viteri, A. Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. J. Biogeogr. 46, 1664–1675 (2019).
Google Scholar
Pintanel, P. Thermal Adaptation of Amphibians in Tropical Mountains. Consequences of Global Warming. PhD thesis, Univ. de Barcelona (2018).
Pintanel, P., Tejedo, M., Salinas-Ivanenko, S., Jervis, P. & Merino-Viteri, A. Predators like it hot: thermal mismatch in a predator-prey system across an elevational tropical gradient. J. Anim. Ecol. 90, 1985–1995 (2021).
Google Scholar
Pough, F. H. Natural daily temperature acclimation of eastern red efts, Notophthalmus v. viridescens (Rafinesque) (Amphibia: Caudata). Comp. Biochem. Physiol. A 47, 71–78 (1974).
Google Scholar
Pough, F. H., Stewart, M. M. & Thomas, R. G. Physiological basis of habitat partitioning in Jamaican Eleutherodactylus. Oecologia 27, 285–293 (1977).
Google Scholar
Quiroga, L. B., Sanabria, E. A., Fornés, M. W., Bustos, D. A. & Tejedo, M. Do sublethal concentrations of chlorpyrifos induce changes in the thermal sensitivity and tolerance of anuran tadpoles in the toad Rhinella arenarum? Chemosphere 219, 671–677 (2019).
Google Scholar
Rausch, C. The Thermal Ecology of the Red-Spotted Toad, Bufo punctatus, Across Life History. BSc thesis, Univ. Nevada (2007).
Reichenbach, N. & Brophy, T. R. Natural history of the Peaks of Otter salamander (Plethodon hubrichti) along an elevational gradient. Herpetol. Bull. 141, 7–15 (2017).
Reider, K. E., Larson, D. J., Barnes, B. M. & Donnelly, M. A. Thermal adaptations to extreme freeze–thaw cycles in the high tropical Andes. Biotropica 53, 296–306 (2021).
Google Scholar
Richter-Boix, A. et al. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69, 2210–2226 (2015).
Google Scholar
Riquelme, N. A., Díaz-Páez, H. & Ortiz, J. C. Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile. J. Therm. Biol. 60, 237–245 (2016).
Google Scholar
Ritchart, J. P. & Hutchison, V. H. The effects of ATP and cAMP on the thermal tolerance of the mudpuppy, Necturus maculosus. J. Therm. Biol. 11, 47–51 (1986).
Google Scholar
Rivera-Burgos, A. C. Habitat Suitability for Eleutherodactylus frogs in Puerto Rico: Indexing Occupancy, Abundance and Reproduction to Climatic and Habitat Characteristics. MSc thesis, North Carolina State Univ. (2019).
Rivera-Ordonez, J. M., Nowakowski, A. J., Manansala, A., Thompson, M. E. & Todd, B. D. Thermal niche variation among individuals of the poison frog, Oophaga pumilio, in forest and converted habitats. Biotropica 51, 747–756 (2019).
Google Scholar
Romero Barreto, P. Requerimientos Fisiológicos y Microambientales de dos Especies de Anfibios (Scinax ruber e Hyloxalus yasuni) del Bosque Tropical de Yasuní y sus Implicaciones Ante el Cambio Climático. BSc thesis, Pontificia Univ. Católica Del Ecuador (2013).
Ruiz-Aravena, M. et al. Impact of global warming at the range margins: Phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian. Ecol. Evol. 4, 4467–4475 (2014).
Google Scholar
Ruthsatz, K. et al. Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of Xenopus laevis larvae. Conserv. Physiol. 6, coy059 (2018).
Google Scholar
Ruthsatz, K. et al. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J. Comp. Physiol. B 190, 297–315 (2020).
Google Scholar
Rutledge, P. S., Spotila, J. R. & Easton, D. P. Heat hardening in response to two types of heat shock in the lungless salamanders Eurycea bislineata and Desmognathus ochrophaeus. J. Therm. Biol. 12, 235–241 (1987).
Google Scholar
Sanabria, E. et al. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean toads (Rhinella spinulosa) from Monte Desert, Argentina. J. Therm. Biol. 74, 195–200 (2018).
Google Scholar
Sanabria, E. A., González, E., Quiroga, L. B. & Tejedo, M. Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulational variation. J. Zool. 313, 283–296 (2021).
Google Scholar
Sanabria, E. A. & Quiroga, L. B. Change in the thermal biology of tadpoles of Odontophrynus occidentalis from the Monte Desert, Argentina: responses to photoperiod. J. Therm. Biol. 36, 288–291 (2011).
Google Scholar
Sanabria, E. A., Quiroga, L. B., González, E., Moreno, D. & Cataldo, A. Thermal parameters and locomotor performance in juvenile of Pleurodema nebulosum (Anura: Leptodactylidae) from the Monte Desert. J. Therm. Biol. 38, 390–395 (2013).
Google Scholar
Sanabria, E. A., Quiroga, L. B. & Martino, A. L. Seasonal changes in the thermal tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. J. Therm. Biol. 37, 409–412 (2012).
Google Scholar
Sanabria, E. A., Quiroga, L. B. & Martino, A. L. Seasonal changes in the thermal tolerances of Odontophrynus occidentalis (Berg, 1896) (Anura: Cycloramphidae). Belg. J. Zool. 143, 23–29 (2013).
Google Scholar
Sanabria, E. A. et al. Thermal ecology of the post-metamorphic Andean toad (Rhinella spinulosa) at elevation in the Monte Desert, Argentina. J. Therm. Biol. 52, 52–57 (2015).
Google Scholar
Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).
Google Scholar
Sanabria, E. A. & Quiroga, L. B. Thermal parameters changes in males of Rhinella arenarum (Anura: Bufonidae) related to reproductive periods. Rev. Biol. Trop. 59, 347–353 (2011).
Google Scholar
Scheffers, B. R. et al. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45, 628–635 (2013).
Google Scholar
Schmid, W. D. High temperature tolerances of Bufo hemiophrys and Bufo cognatus. Ecology 46, 559–560 (1965).
Google Scholar
Sealer, J. A. & West, B. W. Critical thermal maxima of some Arkansas salamanders in relation to thermal acclimation. Herpetologica 25, 122–124 (1969).
Seibel, R. V. Variables affecting the critical thermal maximum of the leopard frog, Rana pipiens Schreber. Herpetologica 26, 208–213 (1970).
Sherman, E. Ontogenetic change in thermal tolerance of the toad Bufo woodhousii fowleri. Comp. Biochem. Physiol. A 65, 227–230 (1980).
Google Scholar
Sherman, E. Thermal biology of newts (Notophthalmus viridescens) chronically infected with a naturally occurring pathogen. J. Therm. Biol. 33, 27–31 (2008).
Google Scholar
Sherman, E., Baldwin, L., Fernández, G. & Deurell, E. Fever and thermal tolerance in the toad Bufo marinus. J. Therm. Biol. 16, 297–301 (1991).
Google Scholar
Sherman, E. & Levitis, D. Heat hardening as a function of developmental stage in larval and juvenile Bufo americanus and Xenopus laevis. J. Therm. Biol. 28, 373–380 (2003).
Google Scholar
Shi, L., Zhao, L., Ma, X. & Ma, X. Selected body temperature and thermal tolerance of tadpoles of two frog species (Fejervarya limnocharis and Microhyla ornata) acclimated under different thermal conditions. Acta Ecol. Sin. 32, 465–471 (2012).
Google Scholar
Simon, M. N., Ribeiro, P. L. & Navas, C. A. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. J. Therm. Biol. 48, 36–44 (2015).
Google Scholar
Simon, M. Plasticidade Fenotípica em Relação à Temperatura de Larvas de Rhinella (Anura: Bufonidae) da Caatinga e da Floresta Atlântica. MSc thesis, Univ. de Sao Paulo (2010).
Skelly, D. K. & Freidenburg, L. K. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).
Google Scholar
Sos, T. Thermoconformity even in hot small temporary water bodies: a case study in yellow-bellied toad (Bombina v. variegata). Herpetol. Romanica 1, 1–11 (2007).
Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).
Google Scholar
Tracy, C. R., Christian, K. A., Betts, G. & Tracy, C. R. Body temperature and resistance to evaporative water loss in tropical Australian frogs. Comp. Biochem. Physiol. A 150, 102–108 (2008).
Google Scholar
Turriago, J. L., Parra, C. A. & Bernal, M. H. Upper thermal tolerance in anuran embryos and tadpoles at constant and variable peak temperatures. Can. J. Zool. 93, 267–272 (2015).
Google Scholar
Vidal, M. A., Novoa-Muñoz, F., Werner, E., Torres, C. & Nova, R. Modeling warming predicts a physiological threshold for the extinction of the living fossil frog Calyptocephalella gayi. J. Therm. Biol. 69, 110–117 (2017).
Google Scholar
von May, R. et al. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol. Evol. 7, 3257–3267 (2017).
Google Scholar
Wagener, C., Kruger, N. & Measey, J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J. Exp. Biol. 224, jeb233031 (2021).
Google Scholar
Wang, H. & Wang, L. Thermal adaptation of the common giant toad (Bufo gargarizans) at different earlier developmental stages. J. Agric. Univ. Hebei 31, 79–83 (2008).
Wang, L. The effects of constant and variable thermal acclimation on thermal tolerance of the common giant toad tadpoles (Bufo gargarizans). Acta Ecol. Sin. 34, 1030–1034 (2014).
Wang, L.-Z. & Li, X.-C. Effect of temperature on incubation and thermal tolerance of the Chinese forest frog. Chin. J. Zool. 42, 121–127 (2007).
Wang, L. & Li, X.-C. Effects of constant thermal acclimation on thermal tolerance of the Chinese forest frog (Rana chensinensis). Acta Hydrobiol. Sin. 31, 748–750 (2007).
Google Scholar
Wang, L.-Z., Li, X.-C. & Sun, T. Preferred temperature, avoidance temperature and lethal temperature of tadpoles of the common giant toad (Bufo gargarizans) and the Chinese forest frog (Rana chensinensis). Chin. J. Zool. 40, 23–27 (2005).
Warburg, M. R. On the water economy of Israel amphibians: the anurans. Comp. Biochem. Physiol. A 40, 911–924 (1971).
Google Scholar
Warburg, M. R. The water economy of Israel amphibians: the urodeles Triturus vittatus (Jenyns) and Salamandra salamandra (L.). Comp. Biochem. Physiol. A 40, 1055–1063 (1971).
Google Scholar
Willhite, C. & Cupp, P. V. Daily rhythms of thermal tolerance in Rana clamitans (Anura: Ranidae) tadpoles. Comp. Biochem. Physiol. A 72, 255–257 (1982).
Google Scholar
Wu, C.-S. & Kam, Y.-C. Thermal tolerance and thermoregulation by Taiwanese rhacophorid tadpoles (Buergeria japonica) living in geothermal hot springs and streams. Herpetologica 61, 35–46 (2005).
Google Scholar
Wu, Q.-H. & Hsieh, C.-H. Thermal Tolerance and Population Genetics of Hynobius fuca. Shei-Pa National Park Research Report (Chinese Culture University, 2016).
Xu, X. The Effect of Temperature on Body Temperature and Thermoregulation in Different Geographic Populations of Rana dybowskii. PhD thesis, Harbin Normal Univ. (2017).
Yandún Vela, M. C. Capacidad de Aclimatación en Renacuajos de dos Especies de Anuros: Rhinella marina (Bufonidae) y Gastrotheca riobambae (Hemiphractidae) y su Vulnerabilidad al Cambio Climático. BSc thesis, Pontificia Univ. Católica Del Ecuador (2017).
Young, V. K. H. & Gifford, M. E. Limited capacity for acclimation of thermal physiology in a salamander, Desmognathus brimleyorum. J. Comp. Physiol. B 183, 409–418 (2013).
Google Scholar
Yu, Z., Dickstein, R., Magee, W. E. & Spotila, J. R. Heat shock response in the salamanders Plethodon jordani and Plethodon cinereus. J. Therm. Biol. 23, 259–265 (1998).
Google Scholar
Zheng, R.-Q. & Liu, C.-T. Giant spiny-frog (Paa spinosa) from different populations differ in thermal preference but not in thermal tolerance. Aquat. Ecol. 44, 723–729 (2010).
Google Scholar
Zweifel, R. G. Studies on the critical thermal maxima of salamanders. Ecology 38, 64–69 (1957).
Google Scholar
Pottier, P. et al. Data and code for ‘Vulnerability of amphibians to global warming’. Zenodo https://doi.org/10.5281/zenodo.14498866 (2024).
Drobniak, SM. et al. Research data – Vulnerability of amphibians to global warming, Jagiellonian University in Kraków, https://doi.org/10.57903/UJ/QGHLUD (2025).
Ivimey‐Cook, E. R. et al. Implementing code review in the scientific workflow: insights from ecology and evolutionary biology. J. Evol. Biol. 36, 1347–1356 (2023).
Google Scholar