Giemsch, L. & Hansen, S. (eds) The Caucasus: Bridge Between the Urban Centres in Mesopotamia and the Pontic Steppes in the 4th and 3th millennium BC. Proceedings of the Caucasus Conference Frankfurt 2018 (Schnell & Steiner, 2021).
Scott, A. et al. Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nat. Ecol. Evol. 6, 813–822 (2022).
Google Scholar
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).
Google Scholar
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
Google Scholar
Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).
Google Scholar
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).
Google Scholar
Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).
Google Scholar
Hansen, S. in Western Anatolia before Troy: Proto-urbanisation in the 4th Millennium BC? (eds Horejs, B. & Mehofer, M.) 243–260 (Austrian Academy of Sciences Press, 2014).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
Google Scholar
Kohl, P. L. The Making of Bronze Age Eurasia (Cambridge Univ. Press, 2007).
Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).
Balanovsky, O. et al. Parallel evolution of genes and languages in the Caucasus region. Mol. Biol. Evol. 28, 2905–2920 (2011).
Google Scholar
Yunusbayev, B. et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol. Biol. Evol. 29, 359–365 (2012).
Google Scholar
Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. 31, 2455–2468 (2021).
Google Scholar
Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982–987 (2022).
Google Scholar
Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175 (2020).
Google Scholar
Anthony, D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehist. Zeitschr. 97, 22–67 (2022).
Google Scholar
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Google Scholar
Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. Elife 11, e77625 (2022).
Google Scholar
Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).
Google Scholar
Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358–365 (2023).
Google Scholar
Mimokhod, R. A., Gak, E. I., Khomutova, T. E., Ryabogina, N. E. & Borisov, A. E. Paleoekologiya – kul’tura – metalloproizvodstvo: printsipy i mekhanizmy epokhi v kul’turnom nasledii Vostochnoy Yevropy v sredniye veka – pervyye pozdney bronzy. Ross. Arkheol. 24–38 (2022).
Reinhold, S., Belinskiy, A. B. & Atabiev, B. C. in Der Kaukasus zwischen Osteuropa und Vorderem Orient in der Bronze- und Eisenzeit (eds Kašuba, M. T. et al.) 405–456 (Dietrich Reimer, 2020).
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
Google Scholar
Shishlina, N. Reconstruction of the Bronze Age of the Caspian Steppes: Life Styles and Life Ways of Pastoral Nomads Vol. 1876 (Archaeopress, 2008).
Andreeva, M. V. Vostochnomanychskaya Kata-Kombnaya Kul’tura: Analiz Materialov Pogrebal’nykh Pamyatnikov (TAUS, 2014).
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2023).
Google Scholar
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).
Google Scholar
Golovanova, L. V. et al. The Epipaleolithic of the Caucasus after the Last Glacial Maximum. Quat. Int. 337, 189–224 (2014).
Google Scholar
Manko, V. O. & Chkhatarashvili, G. L. in Aere Perennius. More Lasting than Bronze. Essays in Honour of Valentin Dergachev on the Occasion of his 80th Birthday (ed. Dergacheva, L. V.) 101–118 (Stratum Library, 2023).
Helwing, B. et al. The Kura Projects: New Research on the Later Prehistory of the Southern Caucasus Vol. 16 (Dietrich Reimer, 2017).
Baudouin, E. L’architecture de Mésopotamie et Du Caucase de La Fin Du 7e á La Fin Du 5e Millénaire Vol. 2 (Brepols, 2021).
Guarino-Vignon, P. et al. Genome-wide analysis of a collective grave from Mentesh Tepe provides insight into the population structure of early neolithic population in the South Caucasus. Commun. Biol. 6, 309 (2023).
Google Scholar
Korenevskiy, S. N. Rozhdenie Kurgana: (pogrebalnye Pamyatniki Eneoliticheskogo Vremeni Predkavkazya I Volgo-Donskogo Mezhdurechia) (TAUS, 2012).
Gorelik, A., Tsybryi, A. V. & Tsybryi, V. V. ‘Neolithisation’ in the NE Sea of Azov region: one step forward, two steps back? Doc. Praehist. 43, 139–160 (2016).
Google Scholar
Hollund, H. I., Higham, T., Belinskij, A. & Korenevskij, S. Investigation of palaeodiet in the North Caucasus (South Russia) Bronze Age using stable isotope analysis and AMS dating of human and animal bones. J. Archaeol. Sci. 37, 2971–2983 (2010).
Google Scholar
Shishlina, N., Zazovskaya, E., van der Plicht, J. & Sevastyanov, V. Isotopes, plants, and reservoir effects: case study from the Caspian steppe Bronze Age. Radiocarbon 54, 749–760 (2012).
Google Scholar
Reinhold, S. Der Kaukasus und die Eurasische Steppe – Konjunkturen einer kulturellen Kontaktzone während der Bronze- und frühen Eisenzeit. in You Only See What You Know. You Only Know What You See. Global Historic Perspectives on Intercultural Phenomena of Mobility. Festschrift Für Hermann Parzinger zum 65. Geburtstag (eds Schneeweiss, J. et al.) 437–460 (Marie Leidorf, 2024).
Hermes, T. R. et al. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. Proc. Biol. Sci. 286, 20191273 (2019).
Google Scholar
Honeychurch, W. et al. The earliest herders of East Asia: examining Afanasievo entry to Central Mongolia. Archaeol. Res. Asia 26, 100264 (2021).
Google Scholar
Korenevskiy, S. N. & Berezin, Y. B. Eneolithic Kurgan Burials from the Cemetery of Konstantinovsky-6. Strat. Plus 2/17, 385–396 (2017).
Knipper, C. et al. Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus. PLoS ONE 15, e0239861 (2020).
Google Scholar
Reinhold, S. et al. in Appropriating Innovations (eds Stockhammer, P. W. & Maran, J.) 78–97 (Oxbow, 2017).
Librado, P. et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 598, 634–640 (2021).
Google Scholar
de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).
Google Scholar
Burmeister, S. in Appropriating Innovations (eds Stockhammer, P. W. & Maran, J.) 69–77 (Oxbow, 2017).
Shishlina, N., Ankusheva, P., Orfinskaya, O. & Kiseleva, D. in The Indo-European Puzzle Revisited. Integrating Archaeology, Genetics, and Linguistics (eds Kristian, K., Kroonen, G. & Willerslev, E.) 275–281 (Cambridge Univ. Press, 2023).
Hansen, S. in The Caucasus (eds Giemsch, L. & Hansen, S.) 31–86 (Schnell & Steiner, 2021).
Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248–E11255 (2018).
Google Scholar
Wilkin, S. et al. Dairying enabled Early Bronze Age Yamnaya steppe expansions. Nature 598, 629–633 (2021).
Google Scholar
Kaiser, E. Das dritte Jahrtausend im osteuropäischen Steppenraum: Kulturhistorische Studien zu prähistorischer Subsistenzwirtschaft und Interaktion mit benachbarten Räumen (Freie Universität Berlin, 2019).
Batiuk, S. D. The fruits of migration: understanding the ‘longue durée’ and the socio-economic relations of the Early Transcaucasian Culture. J. Anthropol. Archaeol. 32, 449–477 (2013).
Google Scholar
Perşoiu, A., Ionita, M. & Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event – a hypothesis. Clim. Past 15, 781–793 (2019).
Google Scholar
Reinhold, S. et al. At the onset of settled pastoralism – implications of archaeozoological and isotope analyses from Bronze Age sites in the North Caucasus. Quat. Int. https://doi.org/10.1016/j.quaint.2023.05.008 (2023).
Reinhold, S., Korobov, D. S. & Belinskiy, A. B. Landschaftsarchäologie im Nordkaukasus: Studien zu einer neu entdeckten bronzezeitlichen Kulturlandschaft im Hochgebirge des Nordkaukasus Vol. 38 (Habelt, 2017).
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
Google Scholar
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).
Google Scholar
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, 20130624 (2015).
Google Scholar
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).
Google Scholar
Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).
Google Scholar
Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).
Google Scholar
Kapp, J. D., Green, R. E. & Shapiro, B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 112, 241–249 (2021).
Google Scholar
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
Google Scholar
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).
Google Scholar
Rohrlach, A. B. et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep. 11, 15005 (2021).
Google Scholar
Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).
Google Scholar
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinform. 15, 356 (2014).
Google Scholar
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
Google Scholar
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).
Google Scholar
Furtwängler, A. et al. Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci. Rep. 8, 1–8 (2018).
Google Scholar
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
Google Scholar
Rohrlach, A. B., Tuke, J., Popli, D. & Haak, W. BREADR: An R package for the Bayesian estimation of genetic relatedness from low-coverage genotype data. Preprint at bioRxiv https://doi.org/10.1101/2023.04.17.537144 (2023).
Alaçamlı, E. et al. READv2: advanced and user-friendly detection of biological relatedness in archaeogenomics. Genome Biol. 25, 216 (2024).
Chao, F., Gerland, P., Cook, A. R. & Alkema, L. Systematic assessment of the sex ratio at birth for all countries and estimation of national imbalances and regional reference levels. Proc. Natl Acad. Sci. USA 116, 9303–9311 (2019).
Google Scholar
Sedgwick, P. Multiple significance tests: the Bonferroni correction. BMJ 344, e509 (2012).
Champely, S. Pwr: Basic Functions for Power Analysis. https://CRAN.R-project.org/package=pwr (2020).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
Google Scholar
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Google Scholar
Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010).
Google Scholar
Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).
Google Scholar
Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).
Google Scholar
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).
Google Scholar
Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455–458 (2015).
Google Scholar
Kılınç, G. M. et al. The Demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).
Google Scholar
Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).
Google Scholar
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
Google Scholar
van den Brink, E. C. M. et al. A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levantina 49, 105–135 (2017).
Google Scholar
Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).
Google Scholar
Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).
Google Scholar
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
Google Scholar
Krzewińska, M. et al. Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 4, eaat4457 (2018).
Google Scholar
de Damgaard, P. B. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).
Google Scholar
Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).
Google Scholar
Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).
Google Scholar
Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019).
Google Scholar
Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).
Google Scholar
Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
Google Scholar
Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with First Americans and across Eurasia. Cell 181, 1232–1245 (2020).
Google Scholar
Agranat-Tamir, L. et al. The genomic history of the Bronze Age Southern Levant. Cell 181, 1146–1157 (2020).
Google Scholar
Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell 183, 890–904 (2020).
Google Scholar
Kılınç, G. M. et al. Human population dynamics and Yersinia pestis in ancient northeast Asia. Sci. Adv. 7, eabc4587 (2021).
Google Scholar
Saag, L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 7, eabd6535 (2021).
Google Scholar
Zhang, F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256–261 (2021).
Google Scholar
Altınışık, N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition. Sci. Adv. 8, eabo3609 (2022).
Google Scholar
Koptekin, D. et al. Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia and the East Mediterranean. Curr. Biol. 33, 41–57 (2023).
Google Scholar
Wang, X. et al. Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proc. Natl Acad. Sci. USA 120, e2210611120 (2023).
Google Scholar
Mallick, S. et al. The Allen Ancient DNA Resource (AADR): a curated compendium of ancient human genomes. Sci. Data 11:182 (2024).
Schmid, C. et al. Poseidon – a framework for archaeogenetic human genotype data management. eLife https://doi.org/10.7554/elife.98317.1 (2024).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Google Scholar
Petr, M., Vernot, B. & Kelso, J. admixr—R package for reproducible analyses using ADMIXTOOLS. Bioinformatics 35, 3194–3195 (2019).
Google Scholar
Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).
Google Scholar
Delaneau, O. GLIMPSE: Low Coverage Calling of Genotypes https://github.com/odelaneau/GLIMPSE (2020).
Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).
Google Scholar
Rohrlach, B. BenRohrlach/CaucasusIIAncientDNAStudy: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.13709775 (2024).