Strange IndiaStrange India


  • 1.

    Müller, O. & Krawinkel, M. Malnutrition and health in developing countries. CMAJ 173, 279–286 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Simpson, S. J., Le Couteur, D. G. & Raubenheimer, D. Putting the balance back in diet. Cell 161, 18–23 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Jung, S.-H. et al. Identification of a novel insect neuropeptide, CNMa and its receptor. FEBS Lett. 588, 2037–2041 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Ganguly, A. et al. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep. 18, 737–750 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Croset, V., Schleyer, M., Arguello, J. R., Gerber, B. & Benton, R. A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci. Rep. 6, 34871 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Nottebohm, E. et al. The gene poxn controls different steps of the formation of chemosensory organs in Drosophila. Neuron 12, 25–34 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Dus, M. et al. Nutrient sensor in the brain directs the action of the brain–gut axis in Drosophila. Neuron 87, 139–151 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Yang, Z. et al. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res. 28, 1013–1025 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Buchon, N. et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 3, 1725–1738 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Gallinetti, J., Harputlugil, E. & Mitchell, J. R. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem. J. 449, 1–10 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J. & Hinnebusch, A. G. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6, 269–279 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Wolfson, R. L. & Sabatini, D. M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Ye, J. et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 29, 2082–2096 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Bouché, V. et al. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy 12, 484–498 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15, e2000862 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Erkosar, B., Storelli, G., Defaye, A. & Leulier, F. Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 13, 8–14 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Sun, J. et al. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat. Commun. 8, 14161 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Liu, Q. et al. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science 356, 534–539 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Bjordal, M., Arquier, N., Kniazeff, J., Pin, J. P. & Léopold, P. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156, 510–521 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Hao, S. et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307, 1776–1778 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Marianes, A. & Spradling, A. C. Physiological and stem cell compartmentalization within the Drosophila midgut. eLife 2, e00886 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Lemaitre, B. & Miguel-Aliaga, I. The digestive tract of Drosophila melanogaster. Annu. Rev. Genet. 47, 377–404 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Kiela, P. R. & Ghishan, F. K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 30, 145–159 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Redhai, S. et al. An intestinal zinc sensor regulates food intake and developmental growth. Nature 580, 263–268 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Hill, C. M., Berthoud, H.-R., Münzberg, H. & Morrison, C. D. Homeostatic sensing of dietary protein restriction: a case for FGF21. Front. Neuroendocrinol. 51, 125–131 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78, 223–241 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    De Sousa-Coelho, A. L., Marrero, P. F. & Haro, D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 443, 165–171 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Zhang, Y. et al. TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose. Autophagy 14, 1959–1975 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Fon Tacer, K. et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 24, 2050–2064 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Hadjieconomou, D. et al. Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Wang, P., Jia, Y., Liu, T., Jan, Y. N. & Zhang, W. Visceral mechano-sensing neurons control drosophila feeding by using Piezo as a sensor. Neuron 108, 640–650 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Semba, R. D. et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine 6, 246–252 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Simpson, S. J. & Raubenheimer, D. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133–142 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Venken, K. J. T. et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat. Methods 8, 737–743 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Kondo, S. & Ueda, R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715–721 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Dus, M., Ai, M. & Suh, G. S. B. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in Drosophila. Nat. Neurosci. 16, 526–528 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Tasanapak, K., Masud-Tippayasak, U., Matsushita, K., Yongmanitchai, W. & Theeragool, G. Influence of Acetobacter pasteurianus SKU1108 aspS gene expression on Escherichia coli morphology. J. Microbiol. 51, 783–790 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Katzen, F., Becker, A., Ielmini, M. V., Oddo, C. G. & Ielpi, L. New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3′ end of the Xanthomonas campestris pv. campestris gum operon. Appl. Environ. Microbiol. 65, 278–282 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *