Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780–782, 1–64 (2018).
Google Scholar
Mason, C. A., Naidu, R. P., Tacchella, S. & Leja, J. Model-independent constraints on the hydrogen-ionizing emissivity at z > 6. Mon. Not. R. Astron. Soc. 489, 2669–2676 (2019).
Google Scholar
Robertson, B. E. et al. Identification and properties of intense star-forming galaxies at redshifts z > 10. Nat. Astron. 7, 611–621 (2023).
Robertson, B. E. Galaxy formation and reionization: key unknowns and expected breakthroughs by the James Webb Space Telescope. Annu. Rev. Astron. Astrophys. 60, 121–158 (2022).
Google Scholar
Madau, P. & Haardt, F. Cosmic reionization after Planck: could quasars do it all? Astrophys. J. Lett. 813, L8 (2015).
Google Scholar
Mitra, S., Choudhury, T. R. & Ferrara, A. Cosmic reionization after Planck II: contribution from quasars. Mon. Not. R. Astron. Soc. 473, 1416–1425 (2018).
Google Scholar
Naidu, R. P. et al. Rapid reionization by the oligarchs: the case for massive, UV-bright, star-forming galaxies with high escape fractions. Astrophys. J. 892, 109 (2020).
Google Scholar
Finkelstein, S. L. et al. Conditions for reionizing the Universe with a low galaxy ionizing photon escape fraction. Astrophys. J. 879, 36 (2019).
Google Scholar
Dayal, P. et al. Reionization with galaxies and active galactic nuclei. Mon. Not. R. Astron. Soc. 495, 3065–3078 (2020).
Google Scholar
Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).
Google Scholar
Bouwens, R. J. et al. UV luminosity functions at redshifts z ∼ 4 to z ∼ 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).
Google Scholar
Robertson, B. E., Ellis, R. S., Furlanetto, S. R. & Dunlop, J. S. Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, L19 (2015).
Google Scholar
Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec Multi-Object spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2306.02467 (2023).
Roberts-Borsani, G. et al. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature 618, 480–483 (2023).
Google Scholar
Mascia, S. et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program. Astron. Astrophys. 672, A155 (2023).
Google Scholar
Ishigaki, M. et al. Full-data results of Hubble Frontier Fields: UV luminosity functions at z ∼ 6–10 and a consistent picture of cosmic reionization. Astrophys. J. 854, 73 (2018).
Google Scholar
Atek, H. et al. Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels. Astrophys. J. 814, 69 (2015).
Google Scholar
Bouwens, R. J., Oesch, P. A., Illingworth, G. D., Ellis, R. S. & Stefanon, M. The z ∼ 6 luminosity function fainter than −15 mag from the Hubble Frontier Fields: the impact of magnification uncertainties. Astrophys. J. 843, 129 (2017).
Google Scholar
Matthee, J. et al. Little Red Dots: an abundant population of faint AGN at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Preprint at https://doi.org/10.48550/arXiv.2306.05448 (2023).
Fujimoto, S. et al. CEERS spectroscopic confirmation of NIRCam-selected z ≳ 8 galaxy candidates with JWST/NIRSpec: initial characterization of their properties. Astrophys. J. Lett. 949, L25 (2023).
Google Scholar
Simmonds, C. et al. The ionizing photon production efficiency at z ∼ 6 for Lyman-alpha emitters using JEMS and MUSE. Mon. Not. R. Astron. Soc. 523, 5468–5486 (2023).
Google Scholar
Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).
Google Scholar
Pahl, A. J., Shapley, A., Steidel, C. C., Chen, Y. & Reddy, N. A. An uncontaminated measurement of the escaping Lyman continuum at z ∼ 3. Mon. Not. R. Astron. Soc. 505, 2447–2467 (2021).
Google Scholar
Atek, H., Richard, J., Kneib, J.-P. & Schaerer, D. The extreme faint end of the UV luminosity function at z ∼ 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties. Mon. Not. R. Astron. Soc. 479, 5184–5195 (2018).
Google Scholar
Gnedin, N. Y. & Madau, P. Modeling cosmic reionization. Living Rev. Comput. Astrophys. 8, 3 (2022).
Google Scholar
Chisholm, J. et al. The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift. Mon. Not. R. Astron. Soc. 517, 5104–5120 (2022).
Google Scholar
Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10−12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).
Naidu, R. P. et al. The HDUV Survey: six Lyman continuum emitter candidates at z ~ 2 revealed by HST UV Imaging. Astrophys. J. 847, 12 (2017).
Google Scholar
Vanzella, E. et al. Direct Lyman continuum and Ly α escape observed at redshift 4. Mon. Not. R. Astron. Soc. 476, L15–L19 (2018).
Google Scholar
Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J. & Slyz, A. Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies. Mon. Not. R. Astron. Soc. 470, 224–239 (2017).
Google Scholar
Ma, X. et al. No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations. Mon. Not. R. Astron. Soc. 498, 2001–2017 (2020).
Google Scholar
Yeh, J. Y.-C. et al. The thesan project: ionizing escape fractions of reionization-era galaxies. Mon. Not. R. Astron. Soc. 520, 2757–2780 (2023).
Google Scholar
Hutter, A., Dayal, P., Legrand, L., Gottlöber, S. & Yepes, G. Astraeus – III. The environment and physical properties of reionization sources. Mon. Not. R. Astron. Soc. 506, 215–228 (2021).
Google Scholar
Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).
Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).
Google Scholar
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).
Google Scholar
Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization. Preprint at https://doi.org/10.48550/arXiv.2212.04026 (2022).
Weaver, J. R. et al. The UNCOVER Survey: a first-look HST + JWST Catalog of 60,000 galaxies near A2744 and beyond. Astrophys. J. Suppl. Ser. 270, 7 (2024).
Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. Publ. Astron. Soc. Pacific 135, 028001 (2023).
Google Scholar
Brammer, G. Grizli: Grism redshift and line analysis software. Astrophysics Source Code Library, record ascl:1905.001 (2019).
Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).
Google Scholar
Steinhardt, C. L. et al. The BUFFALO HST Survey. Astrophys. J. Suppl. Ser. 247, 64 (2020).
Google Scholar
Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).
Google Scholar
Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, A81 (2022).
Google Scholar
Heintz, K. E. et al. Extreme damped Lyman-α absorption in young star-forming galaxies at z = 9 − 11. Preprint at https://doi.org/10.48550/arXiv.2306.00647 (2023).
Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pacific 98, 609–617 (1986).
Google Scholar
Bouwens, R. J., Illingworth, G., Ellis, R. S., Oesch, P. & Stefanon, M. z ∼ 2–9 galaxies magnified by the Hubble Frontier Field clusters. II. Luminosity functions and constraints on a faint-end turnover. Astrophys. J. 940, 55 (2022).
Google Scholar
Brammer, G., Strait, V., Matharu, J. & Momcheva, I. grizli. Zenodo zenodo.org/records/6672538 (2022).
Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).
Google Scholar
Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).
Google Scholar
Pascale, M. et al. Unscrambling the lensed galaxies in JWST images behind SMACS 0723. Astrophys. J. Lett. 938, L6 (2022).
Google Scholar
Bacon, R. et al. The MUSE second-generation VLT instrument. In Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) 773508 (SPIE, 2010).
Mahler, G. et al. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images. Mon. Not. R. Astron. Soc. 473, 663–692 (2018).
Google Scholar
Richard, J. et al. An atlas of MUSE observations towards twelve massive lensing clusters. Astron. Astrophys. 646, A83 (2021).
Bergamini, P. et al. The GLASS-JWST Early Release Science Program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).
Google Scholar
Zitrin, A. et al. Lyα emission from a luminous z = 8.68 galaxy: implications for galaxies as tracers of cosmic reionization. Astrophys. J. Lett. 810, L12 (2015).
Google Scholar
Furtak, L. J. et al. Constraining the physical properties of the first lensed z ∼ 9–16 galaxy candidates with JWST. Mon. Not. R. Astron. Soc. 519, 3064–3075 (2023).
Google Scholar
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Google Scholar
Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).
Google Scholar
Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).
Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).
Google Scholar
Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).
Google Scholar
Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, A95 (2011).
Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofís. 53, 385–438 (2017).
Google Scholar
Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).
Google Scholar
Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear–characterizing galaxy stellar populations from rest-frame ∼1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).
Google Scholar
Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).
Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).
Chevallard, J. & Charlot, S. Modelling and interpreting spectral energy distributions of galaxies with beagle. Mon. Not. R. Astron. Soc. 462, 1415–1443 (2016).
Google Scholar
Ferland, G. J. et al. The 2013 Release of Cloudy. Rev. Mex. Astron. Astrofís. 49, 137–163 (2013).
Google Scholar
Gutkin, J., Charlot, S. & Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 462, 1757–1774 (2016).
Google Scholar
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacific 115, 763–795 (2003).
Google Scholar
Pei, Y. C. Interstellar dust from the Milky Way to the magellanic clouds. Astrophys. J. 395, 130–139 (1992).
Google Scholar
Inoue, A. K., Shimizu, I., Iwata, I. & Tanaka, M. An updated analytic model for attenuation by the intergalactic medium. Mon. Not. R. Astron. Soc. 442, 1805–1820 (2014).
Google Scholar
Roberts-Borsani, G. et al. z ≳ 7 galaxies with Red Spitzer/IRAC [3.6]–[4.5] colors in the full CANDELS data set: the brightest-known galaxies at z ∼ 7–9 and a probable spectroscopic confirmation at z = 7.48. Astrophys. J. 823, 143 (2016).
Google Scholar
Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determination in deep high-z surveys. Astrophys. J. 676, 767–780 (2008).
Google Scholar
Leitherer, C. & Heckman, T. M. Synthetic properties of starburst galaxies. Astrophys. J. Suppl. Ser. 96, 9 (1995).
Google Scholar
Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, 1989).
Atek, H. et al. The star formation burstiness and ionizing efficiency of low-mass galaxies. Mon. Not. R. Astron. Soc. 511, 4464–4479 (2022).
Google Scholar
Bouwens, R. J. et al. The Lyman-continuum photon production efficiency ξion of z ~ 4–5 galaxies from IRAC-based Hα measurements: implications for the escape fraction and cosmic reionization. Astrophys. J. 831, 176 (2016).
Google Scholar
Matthee, J. et al. The production and escape of Lyman-continuum radiation from star-forming galaxies at z ~ 2 and their redshift evolution. Mon. Not. R. Astron. Soc. 465, 3637–3655 (2017).
Google Scholar
Nanayakkara, T. et al. Reconstructing the observed ionizing photon production efficiency at z ~ 2 using stellar population models. Astrophys. J. 889, 180 (2020).
Google Scholar
Matthee, J. et al. EIGER. II. First spectroscopic characterization of the young stars and ionized gas associated with strong Hβ and [O III] line emission in galaxies at z = 5–7 with JWST. Astrophys. J. 950, 67 (2023).
Google Scholar
Sun, F. et al. First sample of Hα+[O III]λ5007 line emitters at z > 6 through JWST/NIRCam slitless spectroscopy: physical properties and line-luminosity functions. Astrophys. J. 953, 53 (2023).
Google Scholar
Tang, M. et al. JWST/NIRSpec spectroscopy of z = 7–9 star-forming galaxies with CEERS: new insight into bright Lyα emitters in ionized bubbles. Mon. Not. R. Astron. Soc. 526, 1657–1686 (2023).
Google Scholar
Saxena, A. et al. JADES: The production and escape of ionizing photons from faint Lyman-alpha emitters in the epoch of reionization. Preprint at https://doi.org/10.48550/arXiv.2306.04536 (2023).
Prieto-Lyon, G. et al. The production of ionizing photons in UV-faint z ~ 3–7 galaxies. Astron. Astrophys. 672, A186 (2023).
Google Scholar
Flury, S. R. et al. The low-redshift Lyman Continuum Survey. I. New, diverse local Lyman continuum emitters. Astrophys. J. Suppl. Ser. 260, 1 (2022).
Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) ≃ 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).
Google Scholar
Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) = 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).
Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass-metallicity relation from z = 0 to z ∼ 3.3. Astrophys. J. 914, 19 (2021).
Google Scholar
Sanders, R. L., Shapley, A. E., Topping, M. W., Reddy, N. A. & Brammer, G. B. Direct Te-based metallicities of z = 2–9 galaxies with JWST/NIRSpec: empirical metallicity calibrations applicable from reionization to cosmic noon. Preprint at https://doi.org/10.48550/arXiv.2303.08149 (2023).
Stanway, E. R. & Eldridge, J. J. Initial mass function variations cannot explain the ionizing spectrum of low metallicity starbursts. Astron. Astrophys. 621, A105 (2019).
Google Scholar
Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoci. Argentina Astron. Plata Argentina 6, 41–43 (1963).
Google Scholar
Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Software 8, 5703 (2023).
Hoffman, M. D. & Gelman, A. et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).
Google Scholar
Phan, D., Pradhan, N. & Jankowiak, M. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Preprint at https://arxiv.org/abs/1912.11554 (2019).
Holwerda, B. W. et al. The sizes of candidate z ~ 9-10 galaxies: confirmation of the bright CANDELS sample and relation with luminosity and mass. Astrophys. J. 808, 6 (2015).
Google Scholar
Ferrara, A., Pallottini, A. & Dayal, P. On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522, 3986–3991 (2023).
Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Astropy Collaboration. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://zenodo.org/records/8314675 (2022).
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1111.4246 (2011).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar