Strange IndiaStrange India


  • Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article 
    CAS 

    Google Scholar 

  • Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kokubo, E. & Ida, S. Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995).

    Article 

    Google Scholar 

  • Cameron, A. G. W. & Ward, W. R. The origin of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120–122 (1976).

    Google Scholar 

  • Ringwood, A. E. Volatile and siderophile element geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537–555 (1992).

    Article 
    CAS 

    Google Scholar 

  • Nie, N. X. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. 884, L48 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lee, C. T. A. et al. Upside-down differentiation and generation of a primordial lower mantle. Nature 463, 930–933 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).

    Article 
    CAS 

    Google Scholar 

  • Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Desch, S. J. & Robinson, K. L. A unified model for hydrogen in the Earth and Moon: no one expects the Theia contribution. Chemie der Erde 79, 125546 (2019).

    Article 

    Google Scholar 

  • Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002).

    Article 
    CAS 

    Google Scholar 

  • Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article 
    CAS 

    Google Scholar 

  • Will, P., Busemann, H., Riebe, M. E. I. & Maden, C. Indigenous noble gases in the Moon’s interior. Sci. Adv. 8, 1–9 (2022).

    Article 

    Google Scholar 

  • Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).

    Article 

    Google Scholar 

  • Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & Teodoro, L. F. A. Immediate origin of the Moon as a post-impact satellite. Astrophys. J. Lett. 937, L40 (2022).

    Article 

    Google Scholar 

  • Deng, H. et al. Enhanced mixing in Giant Impact simulations with a new Lagrangian method. Astrophys. J. 870, 127 (2019).

    Article 
    CAS 

    Google Scholar 

  • Deng, H. et al. Primordial Earth mantle heterogeneity caused by the Moon-forming Giant Impact? Astrophys. J. 887, 211 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).

    Article 

    Google Scholar 

  • Kegerreis, J. A. et al. Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and SWIFT. Mon. Not. R. Astron. Soc. 487, 5029–5040 (2019).

    Article 
    CAS 

    Google Scholar 

  • Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).

    Article 
    CAS 

    Google Scholar 

  • Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).

    Article 

    Google Scholar 

  • Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).

    Article 
    CAS 

    Google Scholar 

  • Meier, M. M. M., Reufer, A. & Wieler, R. On the origin and composition of Theia: constraints from new models of the Giant Impact. Icarus 242, 316–328 (2014).

    Article 
    CAS 

    Google Scholar 

  • Robinson, K. L. et al. Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016).

    Article 
    CAS 

    Google Scholar 

  • Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article 
    CAS 

    Google Scholar 

  • Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, 1–19 (2009).

    Article 

    Google Scholar 

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article 
    CAS 

    Google Scholar 

  • Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gurnis, M. The effects of chemical density differences on convective mixing in the Earth’s mantle. J. Geophys. Res., Solid Earth 91, 11407–11419 (1986).

    Article 

    Google Scholar 

  • Tackley, P. J. in The Core‐Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffet, B. A.) 231–253 (American Geophysical Union, 1998).

  • Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett. 296, 403–412 (2010).

    Article 
    CAS 

    Google Scholar 

  • Gu, T., Li, M., McCammon, C. & Lee, K. K. M. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Q. & Li, M. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nat. Geosci. 15, 334–339 (2022).

    Article 
    CAS 

    Google Scholar 

  • McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article 

    Google Scholar 

  • Hernlund, J. W. & Houser, C. On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lei, W. et al. Global adjoint tomography – model GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).

    Article 

    Google Scholar 

  • Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    Article 
    CAS 

    Google Scholar 

  • Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 1, 27–39 (1997).

    Article 

    Google Scholar 

  • Solomatov, V. S. in Treatise on Geophysics 1st edn, Vol. 9 (ed. Schubert, G.) 91–119 (Elsevier, 2007).

  • Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res., Planets 122, 577–598 (2017).

    Article 

    Google Scholar 

  • Boukaré, C. E., Parmentier, E. M. & Parman, S. W. Timing of mantle overturn during magma ocean solidification. Earth Planet. Sci. Lett. 491, 216–225 (2018).

    Article 

    Google Scholar 

  • Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech. 846, 5–36 (2018).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Agrusta, R. et al. Mantle convection interacting with magma oceans. Geophys. J. Int. 220, 1878–1892 (2020).

    Article 
    CAS 

    Google Scholar 

  • Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).

    Article 
    CAS 

    Google Scholar 

  • Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).

    Article 
    CAS 

    Google Scholar 

  • Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 1–46 (2020).

    Article 

    Google Scholar 

  • Ballmer, M. D., Lourenço, D. L., Hirose, K., Caracas, R. & Nomura, R. Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 2785–2806 (2017).

    Article 
    CAS 

    Google Scholar 

  • Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: a study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).

    Article 
    CAS 

    Google Scholar 

  • Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).

    Article 
    CAS 

    Google Scholar 

  • Mulyukova, E., Steinberger, B., Dabrowski, M. & Sobolev, S. V. Survival of LLSVPs for billions of years in a vigorously convecting mantle: replenishment and destruction of chemical anomaly. J. Geophys. Res., Solid Earth 120, 3824–3847 (2015).

    Article 

    Google Scholar 

  • Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA 117, 30993–31001 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).

    Article 
    MATH 

    Google Scholar 

  • Stacey, F. D. A thermal model of the earth. Phys. Earth Planet. Inter. 15, 341–348 (1977).

    Article 

    Google Scholar 

  • Canup, R. M., Barr, A. C. & Crawford, D. A. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222, 200–219 (2013).

    Article 

    Google Scholar 

  • Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & Ida, S. The Giant Impact simulations with density independent smoothed particle hydrodynamics. Icarus 271, 131–157 (2016).

    Article 

    Google Scholar 

  • Reinhardt, C. & Stadel, J. Numerical aspects of Giant Impact simulations. Mon. Not. R. Astron. Soc. 467, 4252–4263 (2017).

    Article 

    Google Scholar 

  • Ruiz-Bonilla, S. et al. Dealing with density discontinuities in planetary SPH simulations. Mon. Not. R. Astron. Soc. 512, 4660–4668 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hosono, N. & Karato, S. The influence of equation of state on the Giant Impact simulations. J. Geophys. Res., Planets 127, 1–18 (2022).

    Article 

    Google Scholar 

  • Hosono, N. et al. Unconvergence of very-large-scale Giant Impact simulations. Publ. Astron. Soc. Jpn 69, 1–11 (2017).

    Article 

    Google Scholar 

  • Meier, T., Reinhardt, C. & Stadel, J. G. The EOS/resolution conspiracy: convergence in proto-planetary collision simulations. Mon. Not. R. Astron. Soc. 1816, 1806–1816 (2021).

    Article 

    Google Scholar 

  • Raskin, C. & Owen, J. M. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem. Astrophys. J. 831, 26 (2016).

    Article 

    Google Scholar 

  • Gabriel, T. S. J. & Allen-Sutter, H. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. Lett. 915, L32 (2021).

    Article 

    Google Scholar 

  • Frontiere, N., Raskin, C. D. & Owen, J. M. CRKSPH – a conservative reproducing kernel smoothed particle hydrodynamics scheme. J. Comput. Phys. 332, 160–209 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Rosswog, S. Astrophysical smooth particle hydrodynamics. New Astron. Rev. 53, 78–104 (2009).

    Article 
    CAS 

    Google Scholar 

  • Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In Astrophysics Source Code Library, ascl-1805 (2018).

  • Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. &Teodoro, L. F. A. The effect of pre-impact spin on the Moon-forming collision. Mon. Not. R. Astron. Soc. 2870, 2861–2870 (2021).

    Google Scholar 

  • Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1056 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hopkins, P. F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53–110 (2015).

    Article 
    CAS 

    Google Scholar 

  • Thompson, S. L. & Lauson, H. S. Improvements in the Chart D Radiation—Hydrodynamic Code. III. Revised Analytic Equation of State. Sandia Report SC-RR-71 0174 (1972).

  • Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    Article 
    CAS 

    Google Scholar 

  • Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    Article 
    CAS 

    Google Scholar 

  • Abe, Y. in Evolution of the Earth and Planets (eds Takahashi, E., Jeanloz, R. & Rubie, D.) 41–54 (American Geophysical Union, 1993).

  • Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res., Solid Earth 124, 3399–3419 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrault, D. et al. Solid–liquid iron partitioning in Earth’s deep mantle. Nature 487, 354–357 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).

    Article 
    MATH 

    Google Scholar 

  • Farrell, K. A. O. & Lowman, J. P. Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle convection models. Phys. Earth Planet. Inter. 182, 73–84 (2010).

    Article 

    Google Scholar 

  • Tackley, P. J. & King, S. D. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4, 1–15 (2003).

    Article 

    Google Scholar 

  • Schaller, M. et al. Swift: a modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications. Preprint at http://arxiv.org/abs/2305.13380 (2023).

  • Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article 
    CAS 

    Google Scholar 

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *