Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
Google Scholar
Höpfner, M. et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608–612 (2019).
Google Scholar
Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl Acad. Sci. USA 119, e2121998119 (2022).
Google Scholar
Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).
Google Scholar
Gu, B. J. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).
Google Scholar
Yang, Y. Y. et al. Improved global agricultural crop- and animal-specific ammonia emissions during 1961–2018. Agr. Ecosy. Environ. 344, 108289 (2023).
Google Scholar
Xu, R. T. et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: empirical and process-based estimates and uncertainty. Glob. Change Biol. 25, 314–326 (2019).
Google Scholar
Ma, R. Y. et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors. Glob. Change Biol. 27, 855–867 (2021).
Google Scholar
Zhan, X. Y. et al. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 55, 1329–1338 (2021).
Google Scholar
Ferrario, M. et al. EDGAR v.6.1. Global Air Pollutant Emissions. European Commission, Joint Research Centre (JRC) http://data.europa.eu/89h/df521e05-6a3b-461c-965a-b703fb62313e (2022).
Ladha, J. K. et al. Achieving the sustainable development goals in agriculture: the crucial role of nitrogen in cereal-based systems. Adv. Agron. 163, 39–116 (2020).
Google Scholar
Fesenfeld, L. P., Schmidt, T. S. & Schrode, A. Climate policy for short- and long-lived pollutants. Nat. Clim. Change 8, 934–936 (2018).
Google Scholar
Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).
Google Scholar
Crippa, M. et al. Gridded emissions of air pollutants for the period 1970-2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018).
Google Scholar
Luo, Z. et al. Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018. Atmos. Chem. Phys. 22, 10375–10388 (2022).
Google Scholar
Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).
Google Scholar
Aneja, V. P., Schlesinger, W. H., Li, Q., Nahas, A. & Battye, W. H. Characterization of the global sources of atmospheric ammonia from agricultural soils. J. Geophys. Res-Atmos. 125, e2019JD031684 (2020).
Google Scholar
Ma, R. et al. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 12, 6308 (2021).
Google Scholar
Zhang, C. et al. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2O emissions in global croplands. Glob. Change Biol. 28, 4409–4422 (2022).
Google Scholar
Sha, Z. P. et al. Improved soil-crop system management aids in NH3 emission mitigation in China. Environ. Pollut. 289, 117844 (2021).
Google Scholar
Ti, C., Xia, L., Chang, S. X. & Yan, X. Y. Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environ. Pollut. 245, 141–148 (2019).
Google Scholar
Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).
Google Scholar
Xia, L. L. & Yan, X. Y. How to feed the world while reducing nitrogen pollution. Nature 613, 34–35 (2023).
Google Scholar
Shahzad, A. N., Qureshi, M. K., Wakeel, A. & Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2, 1106–1114 (2019).
Google Scholar
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
Google Scholar
Xu, P. et al. Role of organic and conservation agriculture in ammonia emissions and crop productivity in China. Environ. Sci. Technol. 56, 2977–2989 (2022).
Google Scholar
Xu, P. et al. Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options. Agric. For. Meteorol. 272-273, 1–11 (2019).
Google Scholar
Li, T. et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Change Biol. 24, e511–e521 (2018).
Google Scholar
Lam, S. K. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat. Food 3, 575–580 (2022).
Google Scholar
Kanter, D. R. & Searchinger, T. D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustain. 1, 544–552 (2018).
Google Scholar
Timilsena, Y. P. et al. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food. Agr. 95, 1131–1142 (2015).
Google Scholar
Duan, J. K. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014–1022 (2021).
Google Scholar
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
Google Scholar
Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).
Google Scholar
Xu, P. et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978-2017. Nat. Food 3, 356–366 (2022).
Google Scholar
Xia, L. L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?. Environ. Sci. Technol. 51, 7450–7457 (2017).
Google Scholar
Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020).
Google Scholar
Erickson, E. D. et al. Biogas production in United States dairy farms incentivized by electricity policy changes. Nat. Sustain. 6, 438–446 (2023).
Google Scholar
Wu, Y. Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
Google Scholar
Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022).
Google Scholar
Ren, C. C., Zhang, X. M., Reis, S. & Gu, B. J. Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability. Agr. Ecosyst. Environ. 333, 107950 (2022).
Google Scholar
Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009).
Google Scholar
Wang, C. et al. Ammonia emissions from croplands decrease with farm size in China. Environ. Sci. Technol. 56, 9915–9923 (2022).
Google Scholar
Wu, K. et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046 (2020).
Google Scholar
Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).
Google Scholar
Chen, Z.-L. et al. Significant contributions of combustion-related sources to ammonia emissions. Nat. Commun. 13, 7710 (2022).
Google Scholar
Guardia, G. et al. Increasing N use efficiency while decreasing gaseous N losses in a non-tilled wheat (Triticum aestivum L.) crop using a double inhibitor. Agr. Ecosyst. Environ. 319, 107546 (2021).
Google Scholar
Recio, J. et al. Joint mitigation of NH3 and N2O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma 373, 114423 (2020).
Google Scholar
Yu, F., Wei, C., Deng, P., Peng, T. & Hu, X. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Sci. Adv. 7, eabf4130 (2021).
Google Scholar
Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21 (1969).
Google Scholar
Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. B. 26, 211–252 (1964).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Biau, G. & Scornet, E. A random forest guided tour. Test 25, 197–227 (2016).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Ishwaran, H., Kogalur, U. B., Gorodeski, E. Z., Minn, A. J. & Lauer, M. S. High-dimensional variable selection for survival data. J. Am. Stat. Assoc. 105, 205–217 (2010).
Google Scholar
Zhang, K., Li, X., Zheng, D. H., Zhang, L. & Zhu, G. F. Estimation of global irrigation water use by the integration of multiple satellite observations. Water Resour. Res. 58, e2021WR030031 (2022).
Google Scholar
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
Google Scholar
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010).
Google Scholar
Tian, H. Q. et al. History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019. Earth Syst. Sci. Data 14, 4551–4568 (2022).
Google Scholar
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Google Scholar
West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).
Google Scholar
Cui, X. Q. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2, 886–893 (2021).
Google Scholar
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
Google Scholar
Food and Agriculture Organization of the United Nations (FAO). FAOSTAT: FAO Statistical Databases (FAO, 2022); https://www.fao.org/food-agriculture-statistics/en/.
IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022).
Google Scholar
Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).
Google Scholar