Das Chakraborty, S., Chang, H., Hansson, B. S. & Sachse, S. Higher-order olfactory neurons in the lateral horn support odor valence and odor identity coding in Drosophila. eLife 11, e74637 (2022).
Google Scholar
Frechter, S. et al. Functional and anatomical specificity in a higher olfactory centre. eLife 8, e44590 (2019).
Google Scholar
Knaden, M., Strutz, A., Ahsan, J., Sachse, S. & Hansson, B. S. Spatial representation of odorant valence in an insect brain. Cell Rep. 1, 392–399 (2012).
Google Scholar
Lerner, H., Rozenfeld, E., Rozenman, B., Huetteroth, W. & Parnas, M. Differential role for a defined lateral horn neuron subset in naive odor valence in Drosophila. Sci. Rep. 10, 6147 (2020).
Google Scholar
Varela, N., Gaspar, M., Dias, S. & Vasconcelos, M. L. Avoidance response to CO2 in the lateral horn. PLoS Biol. 17, e2006749 (2019).
Google Scholar
Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
Google Scholar
Warren, M. S. et al. The decline of butterflies in Europe: problems, significance, and possible solutions. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2002551117 (2021).
Contributions to the genetics, taxonomy, and ecology of Drosophila pseudoobscura and its relatives. Ann. Entomol. Soc. Am. 39, 151 (1946).
Ito, F. & Awasaki, T. Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species. Sci. Rep. 12, 12692 (2022).
Google Scholar
Gallio, M., Ofstad, T. A., Macpherson, L. J., Wang, J. W. & Zuker, C. S. The coding of temperature in the Drosophila brain. Cell 144, 614–624 (2011).
Google Scholar
Sayeed, O. & Benzer, S. Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Natl Acad. Sci. USA 93, 6079–6084 (1996).
Google Scholar
Gibbs, A. G., Perkins, M. C. & Markow, T. A. No place to hide: microclimates of Sonoran Desert Drosophila. J. Therm. Biol 28, 353–362 (2003).
Google Scholar
Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).
Google Scholar
Huda, A., Omelchenko, A. A., Vaden, T. J., Castaneda, A. N. & Ni, L. Responses of different Drosophila species to temperature changes. J. Exp. Biol. https://doi.org/10.1242/jeb.243708 (2022).
Suvorov, A. et al. Widespread introgression across a phylogeny of 155 Drosophila genomes. Curr. Biol. 32, 111–123 (2022).
Google Scholar
Simoes, J. M. et al. Robustness and plasticity in Drosophila heat avoidance. Nat. Commun. 12, 2044 (2021).
Google Scholar
Ni, L. et al. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 500, 580–584 (2013).
Google Scholar
Thorne, N. & Amrein, H. Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons. J. Comp. Neurol. 506, 548–568 (2008).
Google Scholar
Mishra, A. et al. The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool. Sci. Rep. 8, 901 (2018).
Google Scholar
Arenas, O. M. et al. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat. Neurosci. 20, 1686–1693 (2017).
Google Scholar
Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).
Google Scholar
Frank, D. D., Jouandet, G. C., Kearney, P. J., Macpherson, L. J. & Gallio, M. Temperature representation in the Drosophila brain. Nature 519, 358–361 (2015).
Google Scholar
Liu, W. W., Mazor, O. & Wilson, R. I. Thermosensory processing in the Drosophila brain. Nature 519, 353–357 (2015).
Google Scholar
Marin, E. C. et al. Connectomics analysis reveals first-, second-, and third-order thermosensory and hygrosensory neurons in the adult Drosophila brain. Curr. Biol. 30, 3167–3182 (2020).
Google Scholar
Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).
Alpert, M. H., Gil, H., Para, A. & Gallio, M. A thermometer circuit for hot temperature adjusts Drosophila behavior to persistent heat. Curr. Biol. 32, 4079–4087 (2022).
Google Scholar
Alpert, M. H. et al. A circuit encoding absolute cold temperature in Drosophila. Curr. Biol. 30, 2275–2288 (2020).
Google Scholar
Jouandet, G. C. et al. Rapid threat assessment in the Drosophila thermosensory system. Nat. Commun. 14, 7067 (2023).
Google Scholar
Stratman, R. & Markow, T. A. Resistance to thermal stress in desert Drosophila. Funct. Ecol. 12, 965–970 (1998).
Google Scholar
Govek, K. W. et al. CAJAL enables analysis and integration of single-cell morphological data using metric geometry. Nat. Commun. 14, 3672 (2023).
Google Scholar
Auer, T. O. et al. Olfactory receptor and circuit evolution promote host specialization. Nature 579, 402–408 (2020).
Google Scholar
Stensmyr, M. C., Dekker, T. & Hansson, B. S. Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proc. Biol. Sci. 270, 2333–2340 (2003).
Google Scholar
Toda, Y. et al. Early origin of sweet perception in the songbird radiation. Science 373, 226–231 (2021).
Google Scholar
Laursen, W. J., Schneider, E. R., Merriman, D. K., Bagriantsev, S. N. & Gracheva, E. O. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc. Natl Acad. Sci. USA 113, 11342–11347 (2016).
Google Scholar
Yang, S. et al. A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. Proc. Natl Acad. Sci. USA 117, 8633–8638 (2020).
Google Scholar
Sprengelmeyer, Q. D. et al. Recurrent collection of Drosophila melanogaster from wild African environments and genomic insights into species history. Mol. Biol. Evol. 37, 627–638 (2020).
Google Scholar
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Google Scholar
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
Google Scholar
Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961–971 (2014).
Google Scholar
Masumoto, M., Ohde, T., Shiomi, K., Yaginuma, T. & Niimi, T. A baculovirus immediate-early gene, ie1, promoter drives efficient expression of a transgene in both Drosophila melanogaster and Bombyx mori. PLoS ONE 7, e49323 (2012).
Google Scholar
Caron, S. J., Ruta, V., Abbott, L. F. & Axel, R. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497, 113–117 (2013).
Google Scholar
Hayashi, T. T. et al. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster. Curr. Biol. 32, 4000–4012.e5 (2022).
Google Scholar
Li, J., Mahoney, B. D., Jacob, M. S. & Caron, S. J. C. Visual input into the Drosophila melanogaster mushroom body. Cell Rep. 32, 108138 (2020).
Google Scholar
Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife https://doi.org/10.7554/eLife.57443 (2020).
Feng, L., Zhao, T. & Kim, J. neuTube 1.0: A new design for efficient neuron reconstruction software based on the SWC format. eNeuro https://doi.org/10.1523/ENEURO.0049-14.2014 (2015).
Arshadi, C., Gunther, U., Eddison, M., Harrington, K. I. S. & Ferreira, T. A. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat. Methods 18, 374–377 (2021).
Google Scholar
Huang, H., Liu, Y., Yuan, M. & Marron, J. S. Statistical significance of clustering using soft thresholding. J. Comput. Graph. Stat. 24, 975–993 (2015).
Google Scholar