Strange IndiaStrange India


  • Boger, D. L. The difference a single atom can make: synthesis and design at the chemistry–biology interface. J. Org. Chem. 82, 11961–11980 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennington, L. D., Collier, P. N. & Comer, E. Harnessing the necessary nitrogen atom in chemical biology and drug discovery. Med. Chem. Res. https://doi.org/10.1007/s00044-023-03073-3 (2023).

    Article 

    Google Scholar 

  • Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Article 

    Google Scholar 

  • Chiodi, D. & Ishihara, Y. “Magic chloro”: profound effects of the chlorine atom in drug discovery. J. Med. Chem. 66, 5305–5331 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pennington, L. D. & Moustakas, D. T. The necessary nitrogen atom: a versatile high-impact design element for multiparameter optimization. J. Med. Chem. 60, 3552–3579 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boss, C., Bolli, M. H. & Gatfield, J. From bosentan (Tracleer®) to macitentan (Opsumit®): the medicinal chemistry perspective. Bioorg. Med. Chem. Lett. 26, 3381–3394 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eckhardt, M., Klein, T., Nar, H. & Thiemann, S. in Successful Drug Discovery (eds Fischer, J. & Rotella, D. P.) 129–156 (Wiley, 2015); https://doi.org/10.1002/9783527678433.ch7

  • Yamada, K., Sakamoto, T., Omori, K. & Kikkawa, K. in Successful Drug Discovery (eds Fischer, J. & Rotella, D. P.) 61–86 (Wiley, 2015); https://doi.org/10.1002/9783527678433.ch4

  • Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kelley, B. T., Walters, J. C. & Wengryniuk, S. E. Access to diverse oxygen heterocycles via oxidative rearrangement of benzylic tertiary alcohols. Org. Lett. 18, 1896–1899 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 372, 175–182 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Morofuji, T., Inagawa, K. & Kano, N. Sequential ring-opening and ring-closing reactions for converting para-substituted pyridines into meta-substituted anilines. Org. Lett. 23, 6126–6130 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Lu, H., He, Y., Jing, C. & Wei, H. Cobalt-catalyzed nitrogen atom insertion in arylcycloalkenes. J. Am. Chem. Soc. 144, 22433–22439 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kamitani, M. et al. Single–carbon atom transfer to α,β-unsaturated amides from N-heterocyclic carbenes. Science 379, 484–488 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. & Cheng, X. Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nat. Commun. 13, 425 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sundberg, R. J., Suter, S. R. & Brenner, M. Photolysis of 0-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates. J. Am. Chem. Soc. 94, 513–520 (1972).

    Article 
    CAS 

    Google Scholar 

  • Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, P., Billett, B. A., Tsukamoto, T. & Dong, G. ‘Cut and sew’ transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyle, B. T., Levy, J. N., de Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378, 773–779 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher, T. J. & Dussault, P. H. Alkene ozonolysis. Tetrahedron 73, 4233–4258 (2017).

    Article 
    CAS 

    Google Scholar 

  • Smaligo, A. J. et al. Hydrodealkenylative C(sp3)–C(sp2) bond fragmentation. Science 364, 681–685 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fremery, M. I. & Fields, E. K. Amozonolysis of cycloolefins. J. Org. Chem. 29, 2240–2243 (1964).

    Article 
    CAS 

    Google Scholar 

  • Willand-Charnley, R., Fisher, T. J., Johnson, B. M. & Dussault, P. H. Pyridine Is an organocatalyst for the reductive ozonolysis of alkenes. Org. Lett. 14, 2242–2245 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • An, W. et al. Site-selective C8-alkylation of quinoline N-oxides with maleimides under Rh(III) catalysis. J. Org. Chem. 86, 7579–7587 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hwang, H., Kim, J., Jeong, J. & Chang, S. Regioselective introduction of heteroatoms at the C-8 position of quinoline N-oxides: remote C–H activation using N-oxide as a stepping stone. J. Am. Chem. Soc. 136, 10770–10776 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X., Cui, X. & Wu, Y. C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids via palladium-catalyzed regioselective C–H bond activation. Org. Lett. 18, 3722–3725 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Albini, A. & Alpegiani, M. The photochemistry of the N-oxide function. Chem. Rev. 84, 43–71 (1984).

    Article 
    CAS 

    Google Scholar 

  • Spence, G. G., Taylor, E. C. & Buchardt, O. Photochemical reactions of azoxy compounds, nitrones, and aromatic amine N-oxides. Chem. Rev. 70, 231–265 (1970).

    Article 
    CAS 

    Google Scholar 

  • Hurlow, E. E. et al. Photorearrangement of [8]-2,6-pyridinophane N-oxide. J. Am. Chem. Soc. 142, 20717–20724 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shieh, P., Hill, M. R., Zhang, W., Kristufek, S. L. & Johnson, J. A. Clip chemistry: diverse (bio)(macro)molecular and material function through breaking covalent bonds. Chem. Rev. 121, 7059–7121 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cochran, B. M. et al. Development of a commercial process to prepare AMG 232 using a green ozonolysis–Pinnick tandem transformation. J. Org. Chem. 84, 4763–4779 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ragan, J. A. et al. Safe execution of a large-scale ozonolysis: preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its utility in a reductive amination. Org. Process Res. Dev. 7, 155–160 (2003).

    Article 
    CAS 

    Google Scholar 

  • Van Ornum, S. G., Champeau, R. M. & Pariza, R. Ozonolysis applications in drug synthesis. Chem. Rev. 106, 2990–3001 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Blair, H. A. Belumosudil: first approval. Drugs 81, 1677–1682 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malherbe, P. et al. Me-Talnetant and Osanetant interact within overlapping but not identical binding pockets in the human tachykinin neurokinin 3 receptor transmembrane domains. Mol. Pharmacol. 73, 1736–1750 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dexter, D. L. et al. Activity of a novel 4-quinolinecarboxylic acid, NSC 368390 [6-fluoro-2-(2′-fluoro-1,1′-biphenyl-4-yl)-3-methyl-4-quinolinecarboxylic acid sodium salt], against experimental tumors.Cancer Res. 45, 5563–5568 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wise, D. E. et al. Photoinduced oxygen transfer using nitroarenes for the anaerobic cleavage of alkenes. J. Am. Chem. Soc. 144, 15437–15442 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Griesbaum, K. et al. Ozonolysis of vinyl ethers in solution and on polyethylene. J. Org. Chem. 55, 6153–6161 (1990).

    Article 
    CAS 

    Google Scholar 

  • Wojciechowski, B. J., Chiang, C. Y. & Kuczkowski, R. L. Ozonolysis of 1,1-dimethoxyethene, 1,2-dimethoxyethene and vinyl acetate. J. Org. Chem. 55, 1120–1122 (1990).

    Article 
    CAS 

    Google Scholar 

  • Ko, S., Na, Y. & Chang, S. A novel chelation-assisted hydroesterification of alkenes via ruthenium catalysis. J. Am. Chem. Soc. 124, 750–751 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gollnick, K. & Koegler, S. Thermal transformations of oxazole endoperoxides: rearrangements, fragmentations and methanol additions. Tetrahedron Lett. 29, 1007–1010 (1988).

    Article 
    CAS 

    Google Scholar 

  • Gobec, S. et al. in Science of Synthesis (eds Yamamoto, Y. & Shinkai, I.) 573–750 (Thieme, 2004); https://doi.org/10.1055/sos-SD-016-00745

  • Kohlmeyer, C., Schäfer, A., Huy, P. H. & Hilt, G. Formamide-catalyzed nucleophilic substitutions: mechanistic insight and rationalization of catalytic activity. ACS Catal. 10, 11567–11577 (2020).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *