Hercher, M. Laser-induced damage in transparent media. J. Opt. Soc. Am. 54, 563 (1964).
Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937).
Google Scholar
Gray, H. R., Whitley, R. M. & Stroud, C. R. J. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).
Google Scholar
Bonifacio, R. & Lugiato, L. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).
Google Scholar
Boyd, R. W., Gaeta, A. L. & Giese, E. in Springer Handbook of Atomic, Molecular, and Optical Physics (ed. Drake, G.) 1097–1110 (Springer, 2008).
Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).
Google Scholar
Chin, S. L. Femtosecond Laser Filamentation, Vol. 55 (Springer, 2010).
Ready, J. F. Industrial Applications of Lasers (Elsevier, 1997).
Chergui, M., Beye, M., Mukamel, S., Svetina, C. & Masciovecchio, C. Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy. Nat. Rev. Phys. 5, 578–596 (2023).
Google Scholar
Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).
Google Scholar
Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446–449 (2015).
Google Scholar
Kroll, T. et al. Stimulated X-ray emission spectroscopy in transition metal complexes. Phys. Rev. Lett. 120, 133203 (2018).
Google Scholar
Kroll, T. et al. Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020).
Google Scholar
Doyle, M. D. et al. Seeded stimulated X-ray emission at 5.9 keV. Optica 10, 513–519 (2023).
Google Scholar
Zhang, Y. et al. Generation of intense phase-stable femtosecond hard X-ray pulse pairs. Proc. Natl Acad. Sci. USA 119, e2119616119 (2022).
Google Scholar
Halavanau, A. et al. Population inversion X-ray laser oscillator. Proc. Natl Acad. Sci. USA 117, 15511–15516 (2020).
Google Scholar
Chuchurka, S., Benediktovitch, A., Krušič, Š., Halavanau, A. & Rohringer, N. Stochastic modeling of x-ray superfluorescence. Phys. Rev. A 109, 033725 (2024).
Google Scholar
Qi, P. et al. Sensing with femtosecond laser filamentation. Sensors 22, 7076 (2022).
Google Scholar
Lee, Y., Oh, S.-W. & Han, S.-H. Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water. Appl. Spectrosc. 66, 1385–1396 (2012).
Google Scholar
Chin, S. L. et al. Advances in intense femtosecond laser filamentation in air. Laser Phys. 22, 1–53 (2012).
Google Scholar
Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).
Google Scholar
Hoener, M. et al. Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010).
Google Scholar
Cryan, J. P. et al. Auger electron angular distribution of double core-hole states in the molecular reference frame. Phys. Rev. Lett. 105, 083004 (2010).
Google Scholar
Fang, L. et al. Double core-hole production in N2: beating the Auger clock. Phys. Rev. Lett. 105, 083005 (2010).
Google Scholar
Berrah, N. et al. Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser. Proc. Natl Acad. Sci. USA 108, 16912–16915 (2011).
Google Scholar
Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).
Google Scholar
Doumy, G. et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).
Google Scholar
Rudek, B. et al. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nat. Photon. 6, 858–865 (2012).
Google Scholar
Glover, T. E. et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).
Google Scholar
Shwartz, S. et al. X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014).
Google Scholar
Huang, S., Ding, Y., Huang, Z. & Qiang, J. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression. Phys. Rev. Accel. Beams 17, 120703 (2014).
Google Scholar
Ding Y. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers. In Proc. SPIE 9512, Advances in X-ray Free-Electron Lasers Instrumentation III, Vol. 95121B (SPIE, 2015).
Li, S. et al. Characterizing isolated attosecond pulses with angular streaking. Opt. Express 26, 4531–4547 (2018).
Google Scholar
Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).
Google Scholar
Li, S. et al. Attosecond coherent electron motion in Auger-Meitner decay. Science 375, 285–290 (2022).
Google Scholar
Guo, Z. et al. Experimental demonstration of attosecond pump–probe spectroscopy with an X-ray free-electron laser. Nat. Photon. 18, 691–697 (2024).
Google Scholar
Franz, P. et al. Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser. Nat. Photon. 18, 698–703 (2024).
Google Scholar
Driver, T. et al. Attosecond delays in X-ray molecular ionization. Nature 632, 762–767 (2024).
Google Scholar
Yan, J. et al. Terawatt-attosecond hard X-ray free-electron laser at high repetition rate. Nat. Photon. 18, 1293–1298 (2024).
Google Scholar
Bergmann, U. Stimulated X-ray emission spectroscopy. Photosynth. Res. 162, 371–384 (2024).
Google Scholar
Mercadier, L. et al. Evidence of extreme ultraviolet superfluorescence in xenon. Phys. Rev. Lett. 123, 023201 (2019).
Google Scholar
Benediktovitch, A. et al. Amplified spontaneous emission in the extreme ultraviolet by expanding xenon clusters. Phys. Rev. A 101, 063412 (2020).
Google Scholar
Nandi, S. et al. Observation of Rabi dynamics with a short-wavelength free-electron laser. Nature 608, 488–493 (2022).
Google Scholar
Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).
Google Scholar
Krušič, Š., Mihelič, A., Bučar, K. & Žitnik, M. Self-induced splitting of x-ray emission lines. Phys. Rev. A 102, 013102 (2020).
Google Scholar
Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).
Google Scholar
Linker, T. et al. Data for attosecond inner shell lasing at angstrom wavelenghts. Zenodo https://doi.org/10.5281/zenodo.15078615 (2025).