Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016–1019 (2015).
Google Scholar
Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091 (1996).
Google Scholar
Ferretti, D. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005).
Google Scholar
Sowers, T. Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311, 838–840 (2006).
Google Scholar
Fischer, H. et al. Changing boreal methane sources and constant biomass burning during the last termination. Nature 452, 864–867 (2008).
Google Scholar
Tans, P. P. A note on isotopic ratios and the global atmospheric methane budget. Global Biogeochem. Cycles 11, 77–81 (1997).
Google Scholar
Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).
Google Scholar
Chappellaz, J. et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyrbp. Nature 366, 443–445 (1993).
Google Scholar
Rhodes, R. H. et al. Atmospheric methane variability: centennial‐scale signals in the Last Glacial Period. Global Biogeochem. Cycles 31, 575–590 (2017).
Google Scholar
Dyonisius, M. et al. Old carbon reservoirs were not important in the deglacial methane budget. Science 367, 907–910 (2020).
Google Scholar
Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J. & Sucher, C. M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles 14, 559–572 (2000).
Google Scholar
Dansgaard, W. et al. A new Greenland deep ice core. Science 218, 1273–1277 (1982).
Google Scholar
Seltzer, A. M. et al. Does δ18O of O2 record meridional shifts in tropical rainfall? Clim. Past 13, 1323–1338 (2017).
Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard‐Oeschger oscillations. Paleoceanography 29, 99–114 (2014).
Google Scholar
Hopcroft, P. O., Valdes, P. J., O’Connor, F. M., Kaplan, J. O. & Beerling, D. J. Understanding the glacial methane cycle. Nat. Commun. 8, 14383 (2017).
Google Scholar
Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988).
Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).
Google Scholar
Wendt, K. A. et al. Three-phased Heinrich Stadial 4 recorded in NE Brazil stalagmites. Earth Planet. Sci. Lett. 510, 94–102 (2019).
Google Scholar
Martin, K. C. et al. Bipolar impact and phasing of Heinrich-type climate variability. Nature 617, 100–104 (2023).
Google Scholar
Sherwood, O. A., Schwietzke, S., Arling, V. A. & Etiope, G. Global inventory of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017. Earth Syst. Sci. Data 9, 639–656 (2017).
Google Scholar
Bock, M. et al. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proc. Natl Acad. Sci. USA 114, E5778–E5786 (2017).
Google Scholar
Bock, M. et al. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high‐precision δD measurements of atmospheric methane extracted from ice cores. Rapid Commun. Mass Spectrom. 24, 621–633 (2010).
Google Scholar
Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochim. Cosmochim. Acta 270, 409–430 (2020).
Google Scholar
Mühl, M. et al. Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane. Clim. Past 19, 999–1025 (2023).
Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 127–131 (1990).
Google Scholar
Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).
Google Scholar
Kennett, J. P., Cannariato, K. G., Hendy, I. L. & Behl, R. J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–133 (2000).
Google Scholar
Flückiger, J., Knutti, R. & White, J. W. C. Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events. Paleoceanography 21, PA2014 (2006).
Google Scholar
Ganesan, A. L. et al. Spatially resolved isotopic source signatures of wetland methane emissions. Geophys. Res. Lett. 45, 3737–3745 (2018).
Google Scholar
Hopcroft, P. O., Valdes, P. J. & Beerling, D. J. Simulating idealized Dansgaard-Oeschger events and their potential impacts on the global methane cycle. Quat. Sci. Rev. 30, 3258–3268 (2011).
Google Scholar
Bradley, R. S. & Diaz, H. F. Late quaternary abrupt climate change in the tropics and sub‐tropics: the continental signal of tropical hydroclimatic events (THEs). Rev. Geophys. 59, e2020RG000732 (2021).
Google Scholar
Allen, J. R. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).
Itambi, A. C., von Dobeneck, T., Mulitza, S., Bickert, T. & Heslop, D. Millennial‐scale northwest African droughts related to Heinrich events and Dansgaard‐Oeschger cycles: evidence in marine sediments from offshore Senegal. Paleoceanography 24, PA1205 (2009).
Google Scholar
Scroxton, N. et al. Antiphase response of the Indonesian–Australian monsoon to millennial-scale events of the last glacial period. Sci. Rep. 12, 20214 (2022).
Google Scholar
Niu, D. et al. C4 vegetation characteristics in the monsoon rainforest of the Pearl River delta during the MIS 2 period. Org. Geochem. 173, 104494 (2022).
Google Scholar
Riddell-Young, B. et al. Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nat. Geosci. 16, 1174–1180 (2023).
Google Scholar
Zhou, X. et al. Catastrophic drought in East Asian monsoon region during Heinrich event 1. Quat. Sci. Rev. 141, 1–8 (2016).
Google Scholar
Wang, X., Ding, Z., & Peng, P. Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 315, 61–74 (2012).
Fischer, H. et al. Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nat. Geosci. 8, 723–727 (2015).
Google Scholar
Nicewonger, M. R., Aydin, M., Prather, M. J. & Saltzman, E. S. Extracting a history of global fire emissions for the past millennium from ice core records of acetylene, ethane, and methane. J. Geophys. Res. Atmos. 125, e2020JD032932 (2020).
Google Scholar
Möller, L. et al. Independent variations of CH4 emissions and isotopic composition over the past 160,000 years. Nat. Geosci. 6, 885–890 (2013).
Google Scholar
Kleinen, T., Gromov, S., Steil, B. & Brovkin, V. Atmospheric methane since the last glacial maximum was driven by wetland sources. Clim. Past 19, 1081–1099 (2023).
Mooney, S. D. et al. Late Quaternary fire regimes of Australasia. Quat. Sci. Rev. 30, 28–46 (2011).
Google Scholar
Stríkis, N. M. et al. South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl Acad. Sci. USA 115, 3788–3793 (2018).
Google Scholar
Harrison, S. & Goñi, M. S. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957–2980 (2010).
Google Scholar
Daniau, A.-L., Harrison, S. & Bartlein, P. Fire regimes during the Last Glacial. Quat. Sci. Rev. 29, 2918–2930 (2010).
Google Scholar
Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).
Google Scholar
Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 9, 2503 (2018).
Google Scholar
Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).
Google Scholar
Rae, J. W. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).
Google Scholar
Nielsen, S. B., Jochum, M., Pedro, J. B., Eden, C. & Nuterman, R. Two‐timescale carbon cycle response to an AMOC collapse. Paleoceanogr. Paleoclimatol. 34, 511–523 (2019).
Google Scholar
Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. F. & Menviel, L. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Clim. Past 7, 319–338 (2011).
Buizert, C. et al. The WAIS Divide Deep Ice Core WD2014 chronology – Part 1: methane synchronization (68–31 ka bp) and the gas age–ice age difference. Clim. Past 11, 153–173 (2015).
Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).
Google Scholar
Zhang, W. et al. A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records. Quat. Res. 82, 154–163 (2014).
Google Scholar
Buiron, D. et al. TALDICE-1 age scale of the Talos Dome Deep Ice Core, East Antarctica. Clim. Past 7, 1–16 (2011).
Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).
Google Scholar
Buizert, C. et al. Antarctic surface temperature and elevation during the Last Glacial Maximum. Science 372, 1097–1101 (2021).
Google Scholar
Wendt, K. A. et al. Southern Ocean drives multidecadal atmospheric CO2 rise during Heinrich Stadials. Proc. Natl Acad. Sci. USA 121, e2319652121 (2024).
Google Scholar
Schmitt, J., Seth, B., Bock, M. & Fischer, H. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample. Atmos. Meas. Tech. 7, 2645–2665 (2014).
Bock, M., Schmitt, J., Beck, J., Schneider, R. & Fischer, H. Improving accuracy and precision of ice core δD(CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation. Atmos. Meas. Tech. 7, 1999–2012 (2014).
Lee, J. E. Interpreting Climate of the Past from High-Resolution Ice Core Records of Methane. PhD thesis, Oregon State Univ. (2018).
Sigl, M. et al. The WAIS Divide Deep Ice Core WD2014 chronology – Part 2: annual-layer counting (0–31 ka bp). Clim. Past 12, 769–786 (2016).
Schwander, J., Stauffer, B. & Sigg, A. Air mixing in firn and the age of the air at pore close-off. Ann. Glaciol. 10, 141–145 (1988).
Google Scholar
Sowers, T., Bender, M., Raynaud, D. & Korotkevich, Y. S. δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age–gas age differences. J. Geophys. Res. Atmos. 97, 15683–15697 (1992).
Google Scholar
Buizert, C., Sowers, T. & Blunier, T. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records. Earth Planet. Sci. Lett. 361, 110–119 (2013).
Google Scholar
Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).
Google Scholar
Lan, X. et al. Improved constraints on global methane emissions and sinks using δ13C–CH4. Global Biogeochem. Cycles 35, e2021GB007000 (2021).
Google Scholar
Schwietzke, S. et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91 (2016).
Google Scholar
Baumgartner, M. et al. High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences 9, 3961–3977 (2012).
Google Scholar
Beck, J. et al. Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget. Biogeosciences 15, 7155–7175 (2018).
Google Scholar
Levine, J., Wolff, E., Hopcroft, P. O. & Valdes, P. J. Controls on the tropospheric oxidizing capacity during an idealized Dansgaard‐Oeschger event, and their implications for the rapid rises in atmospheric methane during the last glacial period. Geophys. Res. Lett. 39, L12805 (2012).
Google Scholar
Saueressig, G. et al. Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O(1D) and OH: new laboratory measurements and their implications for the isotopic composition of stratospheric methane. J. Geophys. Res. Atmos. 106, 23127–23138 (2001).
Google Scholar
Sowers, T. Atmospheric methane isotope records covering the Holocene period. Quat. Sci. Rev. 29, 213–221 (2010).
Google Scholar
van Herpen, M. M. et al. Photocatalytic chlorine atom production on mineral dust–sea spray aerosols over the North Atlantic. Proc. Natl Acad. Sci. USA 120, e2303974120 (2023).
Google Scholar
Schüpbach, S. et al. Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nat. Commun. 9, 1476 (2018).
Google Scholar
Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M. & Fischer, H. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim. Past 8, 609–623 (2012).
Whitehill, A. R. et al. Clumped isotope effects during OH and Cl oxidation of methane. Geochim. Cosmochim. Acta 196, 307–325 (2017).
Google Scholar
Whiticar, M. J. & Faber, E. Methane oxidation in sediment and water column environments—isotope evidence. Org. Geochem. 10, 759–768 (1986).
Google Scholar
Etiope, G., Milkov, A. V. & Derbyshire, E. Did geologic emissions of methane play any role in Quaternary climate change? Global Planet. Change 61, 79–88 (2008).
Google Scholar
Randerson, J. et al. Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Global Biogeochem. Cycles 19, GB2019 (2005).
Google Scholar
Cantrell, C. A. et al. Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. J. Geophys. Res. Atmos. 95, 22455–22462 (1990).
Google Scholar
Schaefer, H. et al. Ice record of δ13C for atmospheric CH4 across the Younger Dryas-Preboreal transition. Science 313, 1109–1112 (2006).
Google Scholar
Hopcroft, P. O., Valdes, P. J. & Kaplan, J. O. Bayesian analysis of the glacial‐interglacial methane increase constrained by stable isotopes and earth system modeling. Geophys. Res. Lett. 45, 3653–3663 (2018).
Google Scholar
Valdes, P. J., Beerling, D. J. & Johnson, C. E. The ice age methane budget. Geophys. Res. Lett. 32, L02704 (2005).
Google Scholar
Chappellaz, J. et al. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. Atmos. 102, 15987–15997 (1997).
Google Scholar
Mischler, J. A. et al. Carbon and hydrogen isotopic composition of methane over the last 1000 years. Global Biogeochem. Cycles 23, GB4024 (2009).
Google Scholar
Andreae, M. O. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. Phys. 19, 8523–8546 (2019).
Google Scholar
van Marle, M. J. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).
Google Scholar
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
Google Scholar
Jochum, M. et al. Carbon fluxes during Dansgaard–Oeschger events as simulated by an Earth system model. J. Clim. 35, 5745–5758 (2022).
Google Scholar
Harrison, M. E., Page, S. E. & Limin, S. H. The global impact of Indonesian forest fires. Biologist 56, 156–163 (2009).
Riddell-Young, B. Figure source data for Riddell-Young et al., 2024 “Abrupt changes in biomass burning during the last glacial period” (v.1). Zenodo https://doi.org/10.5281/zenodo.13974600 (2024).
Bauska, T. Carbon cycle model and analysis for Riddell-Young et al., 2024 “Abrupt changes in biomass burning during the last glacial period”. Zenodo https://doi.org/10.5281/zenodo.13861216 (2024).
Riddell-Young, B. et al. Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nat. Geosci. 16, 1174–1180 (2023).
Fujita, R. et al. Global and regional CH4 emissions for 1995–2013 derived from atmospheric CH4, δ13C–CH4, and δD–CH4 observations and a chemical transport model. J. Geophys. Res. Atmos. 125, e2020JD032903 (2020).
Google Scholar
Stell, A. C., Douglas, P. M., Rigby, M. & Ganesan, A. L. The impact of spatially varying wetland source signatures on the atmospheric variability of δD–CH4. Philos. Trans. R. Soc. A 379, 20200442 (2021).
Google Scholar