Strange IndiaStrange India


  • Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016–1019 (2015).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091 (1996).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Ferretti, D. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Sowers, T. Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311, 838–840 (2006).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Fischer, H. et al. Changing boreal methane sources and constant biomass burning during the last termination. Nature 452, 864–867 (2008).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Tans, P. P. A note on isotopic ratios and the global atmospheric methane budget. Global Biogeochem. Cycles 11, 77–81 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Chappellaz, J. et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyrbp. Nature 366, 443–445 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Rhodes, R. H. et al. Atmospheric methane variability: centennial‐scale signals in the Last Glacial Period. Global Biogeochem. Cycles 31, 575–590 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Dyonisius, M. et al. Old carbon reservoirs were not important in the deglacial methane budget. Science 367, 907–910 (2020).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J. & Sucher, C. M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles 14, 559–572 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Dansgaard, W. et al. A new Greenland deep ice core. Science 218, 1273–1277 (1982).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Seltzer, A. M. et al. Does δ18O of O2 record meridional shifts in tropical rainfall? Clim. Past 13, 1323–1338 (2017).

    Google Scholar 

  • Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard‐Oeschger oscillations. Paleoceanography 29, 99–114 (2014).

    ADS 

    Google Scholar 

  • Hopcroft, P. O., Valdes, P. J., O’Connor, F. M., Kaplan, J. O. & Beerling, D. J. Understanding the glacial methane cycle. Nat. Commun. 8, 14383 (2017).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988).

    Google Scholar 

  • Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    ADS 

    Google Scholar 

  • Wendt, K. A. et al. Three-phased Heinrich Stadial 4 recorded in NE Brazil stalagmites. Earth Planet. Sci. Lett. 510, 94–102 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Martin, K. C. et al. Bipolar impact and phasing of Heinrich-type climate variability. Nature 617, 100–104 (2023).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Sherwood, O. A., Schwietzke, S., Arling, V. A. & Etiope, G. Global inventory of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017. Earth Syst. Sci. Data 9, 639–656 (2017).

    ADS 

    Google Scholar 

  • Bock, M. et al. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proc. Natl Acad. Sci. USA 114, E5778–E5786 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bock, M. et al. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high‐precision δD measurements of atmospheric methane extracted from ice cores. Rapid Commun. Mass Spectrom. 24, 621–633 (2010).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochim. Cosmochim. Acta 270, 409–430 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Mühl, M. et al. Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane. Clim. Past 19, 999–1025 (2023).

    Google Scholar 

  • Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 127–131 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Kennett, J. P., Cannariato, K. G., Hendy, I. L. & Behl, R. J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–133 (2000).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Flückiger, J., Knutti, R. & White, J. W. C. Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events. Paleoceanography 21, PA2014 (2006).

    ADS 

    Google Scholar 

  • Ganesan, A. L. et al. Spatially resolved isotopic source signatures of wetland methane emissions. Geophys. Res. Lett. 45, 3737–3745 (2018).

    ADS 

    Google Scholar 

  • Hopcroft, P. O., Valdes, P. J. & Beerling, D. J. Simulating idealized Dansgaard-Oeschger events and their potential impacts on the global methane cycle. Quat. Sci. Rev. 30, 3258–3268 (2011).

    ADS 

    Google Scholar 

  • Bradley, R. S. & Diaz, H. F. Late quaternary abrupt climate change in the tropics and sub‐tropics: the continental signal of tropical hydroclimatic events (THEs). Rev. Geophys. 59, e2020RG000732 (2021).

    ADS 

    Google Scholar 

  • Allen, J. R. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).

    Google Scholar 

  • Itambi, A. C., von Dobeneck, T., Mulitza, S., Bickert, T. & Heslop, D. Millennial‐scale northwest African droughts related to Heinrich events and Dansgaard‐Oeschger cycles: evidence in marine sediments from offshore Senegal. Paleoceanography 24, PA1205 (2009).

    ADS 

    Google Scholar 

  • Scroxton, N. et al. Antiphase response of the Indonesian–Australian monsoon to millennial-scale events of the last glacial period. Sci. Rep. 12, 20214 (2022).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Niu, D. et al. C4 vegetation characteristics in the monsoon rainforest of the Pearl River delta during the MIS 2 period. Org. Geochem. 173, 104494 (2022).

    CAS 

    Google Scholar 

  • Riddell-Young, B. et al. Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nat. Geosci. 16, 1174–1180 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Zhou, X. et al. Catastrophic drought in East Asian monsoon region during Heinrich event 1. Quat. Sci. Rev. 141, 1–8 (2016).

    ADS 

    Google Scholar 

  • Wang, X., Ding, Z., & Peng, P. Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 315, 61–74 (2012).

    Google Scholar 

  • Fischer, H. et al. Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nat. Geosci. 8, 723–727 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Nicewonger, M. R., Aydin, M., Prather, M. J. & Saltzman, E. S. Extracting a history of global fire emissions for the past millennium from ice core records of acetylene, ethane, and methane. J. Geophys. Res. Atmos. 125, e2020JD032932 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Möller, L. et al. Independent variations of CH4 emissions and isotopic composition over the past 160,000 years. Nat. Geosci. 6, 885–890 (2013).

    ADS 

    Google Scholar 

  • Kleinen, T., Gromov, S., Steil, B. & Brovkin, V. Atmospheric methane since the last glacial maximum was driven by wetland sources. Clim. Past 19, 1081–1099 (2023).

    Google Scholar 

  • Mooney, S. D. et al. Late Quaternary fire regimes of Australasia. Quat. Sci. Rev. 30, 28–46 (2011).

    ADS 

    Google Scholar 

  • Stríkis, N. M. et al. South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl Acad. Sci. USA 115, 3788–3793 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, S. & Goñi, M. S. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957–2980 (2010).

    ADS 

    Google Scholar 

  • Daniau, A.-L., Harrison, S. & Bartlein, P. Fire regimes during the Last Glacial. Quat. Sci. Rev. 29, 2918–2930 (2010).

    ADS 

    Google Scholar 

  • Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 9, 2503 (2018).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rae, J. W. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Nielsen, S. B., Jochum, M., Pedro, J. B., Eden, C. & Nuterman, R. Two‐timescale carbon cycle response to an AMOC collapse. Paleoceanogr. Paleoclimatol. 34, 511–523 (2019).

    ADS 

    Google Scholar 

  • Bozbiyik, A., Steinacher, M., Joos, F., Stocker, T. F. & Menviel, L. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Clim. Past 7, 319–338 (2011).

    Google Scholar 

  • Buizert, C. et al. The WAIS Divide Deep Ice Core WD2014 chronology – Part 1: methane synchronization (68–31 ka bp) and the gas age–ice age difference. Clim. Past 11, 153–173 (2015).

    Google Scholar 

  • Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, W. et al. A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records. Quat. Res. 82, 154–163 (2014).

    CAS 

    Google Scholar 

  • Buiron, D. et al. TALDICE-1 age scale of the Talos Dome Deep Ice Core, East Antarctica. Clim. Past 7, 1–16 (2011).

    Google Scholar 

  • Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Buizert, C. et al. Antarctic surface temperature and elevation during the Last Glacial Maximum. Science 372, 1097–1101 (2021).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Wendt, K. A. et al. Southern Ocean drives multidecadal atmospheric CO2 rise during Heinrich Stadials. Proc. Natl Acad. Sci. USA 121, e2319652121 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schmitt, J., Seth, B., Bock, M. & Fischer, H. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample. Atmos. Meas. Tech. 7, 2645–2665 (2014).

    Google Scholar 

  • Bock, M., Schmitt, J., Beck, J., Schneider, R. & Fischer, H. Improving accuracy and precision of ice core δD(CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation. Atmos. Meas. Tech. 7, 1999–2012 (2014).

    Google Scholar 

  • Lee, J. E. Interpreting Climate of the Past from High-Resolution Ice Core Records of Methane. PhD thesis, Oregon State Univ. (2018).

  • Sigl, M. et al. The WAIS Divide Deep Ice Core WD2014 chronology – Part 2: annual-layer counting (0–31 ka bp). Clim. Past 12, 769–786 (2016).

    Google Scholar 

  • Schwander, J., Stauffer, B. & Sigg, A. Air mixing in firn and the age of the air at pore close-off. Ann. Glaciol. 10, 141–145 (1988).

    ADS 

    Google Scholar 

  • Sowers, T., Bender, M., Raynaud, D. & Korotkevich, Y. S. δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age–gas age differences. J. Geophys. Res. Atmos. 97, 15683–15697 (1992).

    ADS 
    CAS 

    Google Scholar 

  • Buizert, C., Sowers, T. & Blunier, T. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records. Earth Planet. Sci. Lett. 361, 110–119 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    ADS 

    Google Scholar 

  • Lan, X. et al. Improved constraints on global methane emissions and sinks using δ13C–CH4. Global Biogeochem. Cycles 35, e2021GB007000 (2021).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schwietzke, S. et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91 (2016).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Baumgartner, M. et al. High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences 9, 3961–3977 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Beck, J. et al. Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget. Biogeosciences 15, 7155–7175 (2018).

    CAS 

    Google Scholar 

  • Levine, J., Wolff, E., Hopcroft, P. O. & Valdes, P. J. Controls on the tropospheric oxidizing capacity during an idealized Dansgaard‐Oeschger event, and their implications for the rapid rises in atmospheric methane during the last glacial period. Geophys. Res. Lett. 39, L12805 (2012).

    ADS 

    Google Scholar 

  • Saueressig, G. et al. Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O(1D) and OH: new laboratory measurements and their implications for the isotopic composition of stratospheric methane. J. Geophys. Res. Atmos. 106, 23127–23138 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Sowers, T. Atmospheric methane isotope records covering the Holocene period. Quat. Sci. Rev. 29, 213–221 (2010).

    ADS 

    Google Scholar 

  • van Herpen, M. M. et al. Photocatalytic chlorine atom production on mineral dust–sea spray aerosols over the North Atlantic. Proc. Natl Acad. Sci. USA 120, e2303974120 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schüpbach, S. et al. Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nat. Commun. 9, 1476 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M. & Fischer, H. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim. Past 8, 609–623 (2012).

    Google Scholar 

  • Whitehill, A. R. et al. Clumped isotope effects during OH and Cl oxidation of methane. Geochim. Cosmochim. Acta 196, 307–325 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Whiticar, M. J. & Faber, E. Methane oxidation in sediment and water column environments—isotope evidence. Org. Geochem. 10, 759–768 (1986).

    ADS 
    CAS 

    Google Scholar 

  • Etiope, G., Milkov, A. V. & Derbyshire, E. Did geologic emissions of methane play any role in Quaternary climate change? Global Planet. Change 61, 79–88 (2008).

    ADS 

    Google Scholar 

  • Randerson, J. et al. Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Global Biogeochem. Cycles 19, GB2019 (2005).

    ADS 

    Google Scholar 

  • Cantrell, C. A. et al. Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. J. Geophys. Res. Atmos. 95, 22455–22462 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Schaefer, H. et al. Ice record of δ13C for atmospheric CH4 across the Younger Dryas-Preboreal transition. Science 313, 1109–1112 (2006).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Hopcroft, P. O., Valdes, P. J. & Kaplan, J. O. Bayesian analysis of the glacial‐interglacial methane increase constrained by stable isotopes and earth system modeling. Geophys. Res. Lett. 45, 3653–3663 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valdes, P. J., Beerling, D. J. & Johnson, C. E. The ice age methane budget. Geophys. Res. Lett. 32, L02704 (2005).

    ADS 

    Google Scholar 

  • Chappellaz, J. et al. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. Atmos. 102, 15987–15997 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Mischler, J. A. et al. Carbon and hydrogen isotopic composition of methane over the last 1000 years. Global Biogeochem. Cycles 23, GB4024 (2009).

    ADS 

    Google Scholar 

  • Andreae, M. O. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. Phys. 19, 8523–8546 (2019).

    ADS 
    CAS 

    Google Scholar 

  • van Marle, M. J. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    ADS 

    Google Scholar 

  • van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS 

    Google Scholar 

  • Jochum, M. et al. Carbon fluxes during Dansgaard–Oeschger events as simulated by an Earth system model. J. Clim. 35, 5745–5758 (2022).

    ADS 

    Google Scholar 

  • Harrison, M. E., Page, S. E. & Limin, S. H. The global impact of Indonesian forest fires. Biologist 56, 156–163 (2009).

    Google Scholar 

  • Riddell-Young, B. Figure source data for Riddell-Young et al., 2024 “Abrupt changes in biomass burning during the last glacial period” (v.1). Zenodo https://doi.org/10.5281/zenodo.13974600 (2024).

  • Bauska, T. Carbon cycle model and analysis for Riddell-Young et al., 2024 “Abrupt changes in biomass burning during the last glacial period”. Zenodo https://doi.org/10.5281/zenodo.13861216 (2024).

  • Riddell-Young, B. et al. Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nat. Geosci. 16, 1174–1180 (2023).

  • Fujita, R. et al. Global and regional CH4 emissions for 1995–2013 derived from atmospheric CH4, δ13C–CH4, and δD–CH4 observations and a chemical transport model. J. Geophys. Res. Atmos. 125, e2020JD032903 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Stell, A. C., Douglas, P. M., Rigby, M. & Ganesan, A. L. The impact of spatially varying wetland source signatures on the atmospheric variability of δD–CH4. Philos. Trans. R. Soc. A 379, 20200442 (2021).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *