Strange IndiaStrange India


  • Kakhki, V. R., Anvari, K., Sadeghi, R., Mahmoudian, A. S. & Torabian-Kakhki, M. Pattern and distribution of bone metastases in common malignant tumors. Nucl. Med. Rev. 16, 66–69 (2013).

    Article 

    Google Scholar 

  • Gersing, A. S., Woertler, K., Jungmann, P. M., Bollwein, C. & Schwaiger, B. J. Vertebrae, vertebral end plates, and disks: concepts and specific pathologies. Semin. Musculoskelet. Radiol. 23, 489–496 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Greenspan, S. L. et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Intern. Med. 146, 326–339 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Briasoulis, E. et al. Metastatic breast carcinoma confined to bone: portrait of a clinical entity. Cancer 101, 1524–1528 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, C. K. F. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleming, A., Kishida, M. G., Kimmel, C. B. & Keynes, R. J. Building the backbone: the development and evolution of vertebral patterning. Development 142, 1733–1744 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bok, S. et al. A multi-stem cell basis for craniosynostosis and calvarial mineralization. Nature https://doi.org/10.1038/s41586-023-06526-2 (2023).

  • Matthews, B. G. et al. Heterogeneity of murine periosteum progenitors involved in fracture healing. eLife 10, e58534 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, A. et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc. Natl Acad. Sci. USA 116, 575–580 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Silberstein, L. et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19, 530–543 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aruga, J. et al. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech. Dev. 89, 141–150 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodrigo, I., Hill, R. E., Balling, R., Munsterberg, A. & Imai, K. Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development 130, 473–482 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kinameri, E. et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch–Hes pathway in mouse neurogenesis. PLoS ONE 3, e3859 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grinberg, I. et al. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat. Genet. 36, 1053–1055 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blank, M. C. et al. Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development 138, 1207–1216 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chalepakis, G. et al. The molecular basis of the undulated/Pax-1 mutation. Cell 66, 873–884 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balling, R., Deutsch, U. & Gruss, P. undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell 55, 531–535 (1988).

  • Wright, M. E. Undulated: a new genetic factor in Mus musculus affecting the spine and tail. Heredity 1, 137–141 (1947).

  • Wallin, J. et al. The role of Pax-1 in axial skeleton development. Development 120, 1109–1121 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, X. et al. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 10, e1004820 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foudi, A. et al. Analysis of histone 2B–GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43–56.e21 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakashima, K. et al. The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, S. et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nat. Commun. 12, 6891 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yadav, P. S. et al. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling. Proc. Natl Acad. Sci. USA 118, e2020100118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shim, J. H. et al. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J. Clin. Invest. 123, 4010–4022 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuchimaru, T. et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat. Commun. 9, 2981 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X. et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc. Natl Acad. Sci. USA 107, 12919–12924 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, Y. J. et al. Increased transport of acetyl-CoA into the endoplasmic reticulum causes a progeria-like phenotype. Aging Cell 17, e12820 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wein, M. N. et al. Control of bone resorption in mice by Schnurri-3. Proc. Natl Acad. Sci. USA 109, 8173–8178 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, H. et al. Transcriptome analysis of individual stromal cell populations identifies stroma–tumor crosstalk in mouse lung cancer model. Cell Rep. 10, 1187–1201 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, Y. B. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. et al. SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts. Nat. Commun. 12, 4611 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenblatt, M. B. et al. CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts. J. Exp. Med. 212, 1283–1301 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mcleod, M. J. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22, 299–301 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrew, T. W. et al. Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration. Nat. Commun. 13, 6491 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venable, J. H. & Coggeshall, R. A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, W. K., Wang, Y. B., Liu, Z. X., Cheng, H. & Xue, Y. HemI: a toolkit for illustrating heatmaps. PLoS ONE 9, e111988 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *