Philippe, J. et al. A nonsense loss-of-function mutation in PCSK1 contributes to dominantly inherited human obesity. Int. J. Obes. 39, 295–302 (2015).
Google Scholar
Sandoval, D. A. & D’Alessio, D. A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 95, 513–548 (2015).
Google Scholar
Sobrino Crespo, C., Perianes Cachero, A., Puebla Jiménez, L., Barrios, V. & Arilla Ferreiro, E. Peptides and food intake. Front. Endocrinol. 5, 58 (2014).
Google Scholar
Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).
Google Scholar
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
Google Scholar
Tatemoto, K., Carlquist, M. & Mutt, V. Neuropeptide Y–a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296, 659–660 (1982).
Google Scholar
Lee, K. L., Middleditch, M. J., Williams, G. M., Brimble, M. A. & Cooper, G. J. S. Using mass spectrometry to detect, differentiate, and semiquantitate closely related peptide hormones in complex milieu: measurement of IGF-II and vesiculin. Endocrinology 156, 1194–1199 (2015).
Google Scholar
Lee, J. E. Neuropeptidomics: mass spectrometry-based identification and quantitation of neuropeptides. Genomics Inform. 14, 12–19 (2016).
Google Scholar
Fricker, L. D., Lim, J., Pan, H. & Che, F.-Y. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom. Rev. 25, 327–344 (2006).
Google Scholar
Muthusamy, B. et al. Plasma Proteome Database as a resource for proteomics research. Proteomics 5, 3531–3536 (2005).
Google Scholar
Schwenk, J. M. et al. The Human Plasma Proteome Draft of 2017: building on the Human Plasma Peptide Atlas from mass spectrometry and complementary assays. J. Proteome Res. 16, 4299–4310 (2017).
Google Scholar
Southey, B. R., Amare, A., Zimmerman, T. A., Rodriguez-Zas, S. L. & Sweedler, J. V. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 34, W267–W272 (2006).
Google Scholar
Southey, B. R., Sweedler, J. V. & Rodriguez-Zas, S. L. A Python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites. Front. Neuroinformatics 2, 7 (2008).
Google Scholar
Chance, R. E., Ellis, R. M. & Bromer, W. W. Porcine proinsulin: characterization and amino acid sequence. Science 161, 165–167 (1968).
Google Scholar
Pollock, H. G., Hamilton, J. W., Rouse, J. B., Ebner, K. E. & Rawitch, A. B. Isolation of peptide hormones from the pancreas of the bullfrog (Rana catesbeiana). Amino acid sequences of pancreatic polypeptide, oxyntomodulin, and two glucagon-like peptides. J. Biol. Chem. 263, 9746–9751 (1988).
Google Scholar
Vecchio, I., Tornali, C., Bragazzi, N. L. & Martini, M. The discovery of insulin: an important milestone in the history of medicine. Front. Endocrinol. 9, 613 (2018).
Google Scholar
Tatemoto, K. & Neuropeptide, Y. Complete amino acid sequence of the brain peptide. Proc. Natl Acad. Sci. USA 79, 5485–5489 (1982).
Google Scholar
Lovejoy, D. A. et al. Distinct sequence of gonadotropin-releasing hormone (GnRH) in dogfish brain provides insight into GnRH evolution. Proc. Natl Acad. Sci. USA 89, 6373–6377 (1992).
Google Scholar
Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998).
Google Scholar
Zheng, M., Streck, R. D., Scott, R. E., Seidah, N. G. & Pintar, J. E. The developmental expression in rat of proteases furin, PC1, PC2, and carboxypeptidase E: implications for early maturation of proteolytic processing capacity. J. Neurosci. 14, 4656–4673 (1994).
Google Scholar
Lloyd, D. J., Bohan, S. & Gekakis, N. Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Hum. Mol. Genet. 15, 1884–1893 (2006).
Google Scholar
Muhsin, N. I. A., Bentley, L., Bai, Y., Goldsworthy, M. & Cox, R. D. A novel mutation in the mouse Pcsk1 gene showing obesity and diabetes. Mamm. Genome 31, 17–29 (2020).
Google Scholar
Burnett, L. C. et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader–Willi syndrome. J. Clin. Invest. 127, 293–305 (2017).
Google Scholar
Lin, C. H. et al. An evaluation of liraglutide including its efficacy and safety for the treatment of obesity. Expert Opin. Pharmacother. 21, 275–285 (2020).
Google Scholar
Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).
Google Scholar
Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).
Google Scholar
Peinado, J. R., Li, H., Johanning, K. & Lindberg, I. Cleavage of recombinant proenkephalin and blockade mutants by prohormone convertases 1 and 2: an in vitro specificity study. J. Neurochem. 87, 868–878 (2003).
Google Scholar
Parvaz, N. & Jalali, Z. Molecular evolution of PCSK family: analysis of natural selection rate and gene loss. PLoS ONE 16, e0259085 (2021).
Google Scholar
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Google Scholar
Mooney, C., Haslam, N. J., Pollastri, G. & Shields, D. C. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 7, e45012 (2012).
Google Scholar
Grønning, A. G. B., Kacprowski, T. & Schéele, C. MultiPep: a hierarchical deep learning approach for multi-label classification of peptide bioactivities. Biol. Methods Protoc. 6, bpab021 (2021).
Google Scholar
Petryszak, R. et al. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 44, D746–D752 (2016).
Google Scholar
Raffin-Sanson, M. L., de Keyzer, Y. & Bertagna, X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur. J. Endocrinol. 149, 79–90 (2003).
Google Scholar
Seizinger, B. R. et al. Isolation and structure of a novel C-terminally amidated opioid peptide, amidorphin, from bovine adrenal medulla. Nature 313, 57–59 (1985).
Google Scholar
Ghatei, M. A. et al. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J. Endocrinol. 136, 159–166 (1993).
Google Scholar
Foster, S. R. et al. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179, 895–908.e21 (2019).
Google Scholar
Eipper, B. A., Stoffers, D. A. & Mains, R. E. The biosynthesis of neuropeptides: peptide alpha-amidation. Annu. Rev. Neurosci. 15, 57–85 (1992).
Google Scholar
Kim, K.-H. & Seong, B. L. Peptide amidation: production of peptide hormonesin vivo andin vitro. Biotechnol. Bioprocess Eng. 6, 244–251 (2001).
Google Scholar
Mukai, H., Kawai, K., Suzuki, Y., Yamashita, K. & Munekata, E. Stimulation of dog gastropancreatic hormone release by neuromedin B and its analogues. Am. J. Physiol. 252, E765–E771 (1987).
Google Scholar
Wettergren, A., Pridal, L., Wøjdemann, M. & Holst, J. J. Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regul. Pept. 77, 83–87 (1998).
Google Scholar
Milbrandt, J. Nerve growth factor rapidly induces c-fos mRNA in PC12 rat pheochromocytoma cells. Proc. Natl Acad. Sci. USA 83, 4789–4793 (1986).
Google Scholar
Gabellini, N., Minozzi, M. C., Leon, A. & Dal Toso, R. Nerve growth factor transcriptional control of c-fos promoter transfected in cultured spinal sensory neurons. J. Cell Biol. 118, 131–138 (1992).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Berkowicz, S. R., Featherby, T. J., Whisstock, J. C. & Bird, P. I. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviors consistent with neurodevelopmental disorders. Front. Behav. Neurosci. 10, 196 (2016).
Google Scholar
Wiggenhorn, A. L. et al. A class of secreted mammalian peptides with potential to expand cell-cell communication. Nat. Commun. 14, 8125 (2023).
Google Scholar
Kim, J. T. et al. Cooperative enzymatic control of N-acyl amino acids by PM20D1 and FAAH. eLife 9, e55211 (2020).
Google Scholar
Kim, J. T., Li, V. L., Terrell, S. M., Fischer, C. R. & Long, J. Z. Family-wide annotation of enzymatic pathways by parallel in vivo metabolomics. Cell Chem. Biol. 26, 1623–1629.e3 (2019).
Google Scholar
Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).
Google Scholar
Pedersen, K.-M. et al. Optimization of pig models for translation of subcutaneous pharmacokinetics of therapeutic proteins: liraglutide, insulin aspart and insulin detemir. Transl. Res. J. Lab. Clin. Med. 239, 71–84 (2022).
Google Scholar
Camerlink, I. & Ursinus, W. W. Tail postures and tail motion in pigs: a review. Appl. Anim. Behav. Sci. 230, 105079 (2020).
Google Scholar
Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).
Google Scholar
Sheng, M., McFadden, G. & Greenberg, M. E. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582 (1990).
Google Scholar
Keen, A. C. et al. OZITX, a pertussis toxin-like protein for occluding inhibitory G protein signalling including Gαz. Commun. Biol. 5, 256 (2022).
Google Scholar
Peng, Q., Alqahtani, S., Nasrullah, M. Z. A. & Shen, J. Functional evidence for biased inhibition of G protein signaling by YM-254890 in human coronary artery endothelial cells. Eur. J. Pharmacol. 891, 173706 (2021).
Google Scholar
Fukushima, N. et al. Melittin, a metabostatic peptide inhibiting Gs activity. Peptides 19, 811–819 (1998).
Google Scholar
Borner, T. et al. GDF15 induces anorexia through nausea and emesis. Cell Metab. 31, 351–362.e5 (2020).
Google Scholar
Tsai, V. W. W. et al. The anorectic actions of the TGFβ cytokine MIC-1/GDF15 require an intact brainstem area postrema and nucleus of the solitary tract. PLoS ONE 9, e100370 (2014).
Google Scholar
Madsen, C. T. et al. Combining mass spectrometry and machine learning to discover bioactive peptides. Nat. Commun. 13, 6235 (2022).
Google Scholar
Ma, J. et al. Improved identification and analysis of small open reading frame encoded polypeptides. Anal. Chem. 88, 3967–3975 (2016).
Google Scholar
Donohue, M. J., Filla, R. T., Steyer, D. J., Eaton, W. J. & Roper, M. G. Rapid liquid chromatography–mass spectrometry quantitation of glucose-regulating hormones from human islets of Langerhans. J. Chromatogr. A 1637, 461805 (2021).
Google Scholar
Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2001).
Allen, W. E. et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155 (2017).
Google Scholar
Park, Y.-G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2019).
Google Scholar
Kim, S.-Y. et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl Acad. Sci. USA 112, E6274–E6283 (2015).
Google Scholar
Shelhamer, E., Long, J. & Darrel, T. Fully convolutional networks for semantic segmentation. Preprint at https://doi.org/10.48550/arXiv.1605.06211 (2016).
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Preprint at https://doi.org/10.48550/arXiv.1505.04597 (2015).
Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).
Google Scholar
Batra, V. R. & Schrott, L. M. Acute oxycodone induces the pro-emetic pica response in rats. J. Pharmacol. Exp. Ther. 339, 738–745 (2011).
Google Scholar