Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456 (2017).
Google Scholar
Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large‐scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).
Google Scholar
Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).
Google Scholar
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Google Scholar
Wolosin, M. et al. Exponential Roadmap for Natural Climate Solutions (Conservation International, 2022).
IPCC Working Group. Climate Change 2022 Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).
The Bonn Challenge www.bonnchallenge.org/about (IUCN, 2020).
First Draft of the Post-2020 Global Biodiversity Framework (CBD, 2021).
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).
Google Scholar
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
NDC’s—a Force for Nature? (WWF, 2021).
Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).
Google Scholar
Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839–844 (2022).
Google Scholar
Bodin, B. et al. A standard framework for assessing the costs and benefits of restoration: introducing The Economics of Ecosystem Restoration. Restor. Ecol. 30, e13515 (2022).
Chazdon, R. L. et al. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002 (2020).
Google Scholar
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Laestadius, L. et al. Mapping Opportunities for Forest Landscape Restoration (FAO, 2011).
Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).
Google Scholar
Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).
Google Scholar
Ling, P.-Y. et al. Mapping global forest regeneration—an untapped potential to mitigate climate change and biodiversity loss. Environ. Res. Lett. 18, 054025 (2023).
Google Scholar
Fagan, M. E. et al. The expansion of tree plantations across tropical biomes. Nat. Sustain. 5, 681–688 (2022).
Google Scholar
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).
Google Scholar
Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).
Google Scholar
Cerri, C. C., Volkoff, B. & Andreaux, F. Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. For. Ecol. Manage. 38, 247–257 (1991).
Google Scholar
Damian, J. M. et al. Deforestation and land use change mediate soil carbon changes in the eastern Brazilian Amazon. Reg. Environ. Change 21, 64 (2021).
Shoo, L. P. & Catterall, C. P. Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps. Restor. Ecol. 21, 670–677 (2013).
Google Scholar
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).
Google Scholar
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
Google Scholar
Annex 3A.1 Biomass Default Tables for Section 3.2 Forest Land (ICPP, 2003).
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).
Google Scholar
Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature https://doi.org/10.1038/s41586-023-06723-z (2023).
López-Cubillos, S. et al. Spatial prioritization to achieve the triple bottom line in payment for ecosystem services design. Ecosyst. Serv. 55, 101424 (2022).
Bustamante, M. M. C. et al. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Change 24, 1249–1270 (2019).
Google Scholar
César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica https://doi.org/10.1111/btp.12893 (2021).
Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. Chicago Press, 2014).
Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).
Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
Google Scholar
Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417 (2009).
Google Scholar
Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).
Google Scholar
Shono, K., Chazdon, R., Bodin, B., Wilson, S. J. & Durst, P. Assisted natural regeneration: harnessing nature for restoration. Unasylva 252, 71–81 (2020).
Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical Montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).
Google Scholar
Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).
Google Scholar
Zahawi, R. A., Reid, J. L. & Holl, K. D. Hidden costs of passive restoration. Restor. Ecol. 22, 284–287 (2014).
Google Scholar
Reid, J. L. et al. How long do restored ecosystems persist? Ann. Mo. Bot. Gard. 102, 258–265 (2017).
Google Scholar
Brancalion, P. H. S. et al. A call to develop carbon credits for second-growth forests. Nat. Ecol. Evol. 8, 179–180 (2024).
Warsaw Framework for REDD+ (UNFCCC, 2023).
West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).
Google Scholar
Yeong, K. L. et al. Enrichment planting to improve habitat quality and conservation value of tropical rainforest fragments. Biodivers. Conserv. 25, 957–973 (2016).
Wilson, S. J. Communal management as a strategy for restoring cloud forest landscapes in Andean Ecuador. World Dev. Perspect. 3, 47–49 (2016).
Google Scholar
Soares-Filho, B. et al. Land use. Cracking Brazil’s forest code. Science 344, 363–364 (2014).
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Google Scholar
Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B 375, 20190126 (2020).
Google Scholar
Potapov, P., Laestadius, L. & Minnemeyer, S. Global Map of Potential Forest Cover www.wri.org/resources/maps/atlas-forest-and-landscape-restoration-opportunities/data-info (2011).
Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
Google Scholar
Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).
Google Scholar
Schultz, B. et al. Recognizing the equity implications of restoration priority maps. Environ. Res. Lett. 17, 114019 (2022).
Google Scholar
Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).
Google Scholar
Meyfroidt, P. & Lambin, E. F. Global forest transition: prospects for an end to deforestation. Annu. Rev. Environ. Resour. 36, 343–371 (2011).
Google Scholar
Crouzeilles, R. et al. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).
Google Scholar
Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).
Google Scholar
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
Google Scholar
Land Cover CCI Product User Guide Version 2 Technical Report (ESA, 2017).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).
Google Scholar
Database of Global Administrative Areas (GADM, 2022).
Cubina, A. & Aide, T. M. The effect of distance from forest edge on seed rain and soil seed bank in a tropical Pasture1. Biotropica 33, 260–267 (2001).
Google Scholar
ArcGIS (GIS software) v.10.8. (ESRI, 2022).
Algeet-Abarquero, N., Sánchez-Azofeifa, A., Bonatti, J. & Marchamalo, M. Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay. Reg. Environ. Change 15, 1461–1472 (2015).
Google Scholar
Protected Planet: The World Database on Protected Areas (WDPA) v.1.6 www.protectedplanet.net/en (UNEP-WCMC, IUCN, 2020).
Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).
Google Scholar
Heneghan, L. et al. Integrating soil ecological knowledge into restoration management. Restor. Ecol. 16, 608–617 (2008).
Google Scholar
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Google Scholar
Molin, P. G., Chazdon, R., Frosini de Barros Ferraz, S. & Brancalion, P. H. S. A landscape approach for cost‐effective large‐scale forest restoration. J. Appl. Ecol. 55, 2767–2778 (2018).
Google Scholar
Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Google Scholar
Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).
Google Scholar
Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. 16, 15 (2011).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environ. Res. Lett. 17, 045009 (2022).
Google Scholar
Schiavina, M., Freire, S. & MacManus, K. GHS Population Grid Multitemporal (1975, 1990, 2000, 2015) R2019A (European Commission JRC, 2019).
Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl Acad. Sci. USA 109, 8839–8844 (2012).
Google Scholar
Kummu, M., Taka, M. & Guillaume, J. H. A. Data from: Gridded global datasets for gross domestic product and human development index over 1990–2015, v2. Dryad https://doi.org/10.5061/dryad.dk1j0 (2020).
Thomlinson, J. R. et al. Land-use dynamics in a post-agricultural Puerto rican landscape (1936-1988). Biotropica 28, 525 (1996).
Google Scholar
Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
Google Scholar
Maillard, O. Post-fire natural regeneration trends in Bolivia: 2001–2021. Fire 6, 18 (2023).
Google Scholar
Scheper, A. C., Verweij, P. A. & van Kuijk, M. Post-fire forest restoration in the humid tropics: a synthesis of available strategies and knowledge gaps for effective restoration. Sci. Total Environ. 771, 144647 (2021).
Google Scholar
Artés, T. et al. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 6, 296 (2019).
Google Scholar
Kummu, M., de Moel, H., Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).
Google Scholar
Williams, B. A. et al. Data for ‘Global potential for natural regeneration in deforested tropical regions’. Zenodo https://doi.org/10.5281/zenodo.7428803 (2024).