Strange IndiaStrange India


  • Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780–782, 1–64 (2018).

    ADS 
    MathSciNet 

    Google Scholar 

  • Mason, C. A., Naidu, R. P., Tacchella, S. & Leja, J. Model-independent constraints on the hydrogen-ionizing emissivity at z > 6. Mon. Not. R. Astron. Soc. 489, 2669–2676 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Robertson, B. E. et al. Identification and properties of intense star-forming galaxies at redshifts z > 10. Nat. Astron. 7, 611–621 (2023).

  • Robertson, B. E. Galaxy formation and reionization: key unknowns and expected breakthroughs by the James Webb Space Telescope. Annu. Rev. Astron. Astrophys. 60, 121–158 (2022).

    ADS 

    Google Scholar 

  • Madau, P. & Haardt, F. Cosmic reionization after Planck: could quasars do it all? Astrophys. J. Lett. 813, L8 (2015).

    ADS 

    Google Scholar 

  • Mitra, S., Choudhury, T. R. & Ferrara, A. Cosmic reionization after Planck II: contribution from quasars. Mon. Not. R. Astron. Soc. 473, 1416–1425 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Naidu, R. P. et al. Rapid reionization by the oligarchs: the case for massive, UV-bright, star-forming galaxies with high escape fractions. Astrophys. J. 892, 109 (2020).

    ADS 

    Google Scholar 

  • Finkelstein, S. L. et al. Conditions for reionizing the Universe with a low galaxy ionizing photon escape fraction. Astrophys. J. 879, 36 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Dayal, P. et al. Reionization with galaxies and active galactic nuclei. Mon. Not. R. Astron. Soc. 495, 3065–3078 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).

    ADS 

    Google Scholar 

  • Bouwens, R. J. et al. UV luminosity functions at redshifts z 4 to z 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).

    ADS 

    Google Scholar 

  • Robertson, B. E., Ellis, R. S., Furlanetto, S. R. & Dunlop, J. S. Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, L19 (2015).

    ADS 

    Google Scholar 

  • Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec Multi-Object spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2306.02467 (2023).

  • Roberts-Borsani, G. et al. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature 618, 480–483 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mascia, S. et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program. Astron. Astrophys. 672, A155 (2023).

    CAS 

    Google Scholar 

  • Ishigaki, M. et al. Full-data results of Hubble Frontier Fields: UV luminosity functions at z 6–10 and a consistent picture of cosmic reionization. Astrophys. J. 854, 73 (2018).

    ADS 

    Google Scholar 

  • Atek, H. et al. Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels. Astrophys. J. 814, 69 (2015).

    ADS 

    Google Scholar 

  • Bouwens, R. J., Oesch, P. A., Illingworth, G. D., Ellis, R. S. & Stefanon, M. The z 6 luminosity function fainter than −15 mag from the Hubble Frontier Fields: the impact of magnification uncertainties. Astrophys. J. 843, 129 (2017).

    ADS 

    Google Scholar 

  • Matthee, J. et al. Little Red Dots: an abundant population of faint AGN at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Preprint at https://doi.org/10.48550/arXiv.2306.05448 (2023).

  • Fujimoto, S. et al. CEERS spectroscopic confirmation of NIRCam-selected z 8 galaxy candidates with JWST/NIRSpec: initial characterization of their properties. Astrophys. J. Lett. 949, L25 (2023).

    ADS 

    Google Scholar 

  • Simmonds, C. et al. The ionizing photon production efficiency at z 6 for Lyman-alpha emitters using JEMS and MUSE. Mon. Not. R. Astron. Soc. 523, 5468–5486 (2023).

    ADS 

    Google Scholar 

  • Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Pahl, A. J., Shapley, A., Steidel, C. C., Chen, Y. & Reddy, N. A. An uncontaminated measurement of the escaping Lyman continuum at z 3. Mon. Not. R. Astron. Soc. 505, 2447–2467 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Atek, H., Richard, J., Kneib, J.-P. & Schaerer, D. The extreme faint end of the UV luminosity function at z 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties. Mon. Not. R. Astron. Soc. 479, 5184–5195 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Gnedin, N. Y. & Madau, P. Modeling cosmic reionization. Living Rev. Comput. Astrophys. 8, 3 (2022).

    ADS 

    Google Scholar 

  • Chisholm, J. et al. The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift. Mon. Not. R. Astron. Soc. 517, 5104–5120 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10−12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).

  • Naidu, R. P. et al. The HDUV Survey: six Lyman continuum emitter candidates at z ~ 2 revealed by HST UV Imaging. Astrophys. J. 847, 12 (2017).

    ADS 

    Google Scholar 

  • Vanzella, E. et al. Direct Lyman continuum and Ly α escape observed at redshift 4. Mon. Not. R. Astron. Soc. 476, L15–L19 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J. & Slyz, A. Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies. Mon. Not. R. Astron. Soc. 470, 224–239 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Ma, X. et al. No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations. Mon. Not. R. Astron. Soc. 498, 2001–2017 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Yeh, J. Y.-C. et al. The thesan project: ionizing escape fractions of reionization-era galaxies. Mon. Not. R. Astron. Soc. 520, 2757–2780 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Hutter, A., Dayal, P., Legrand, L., Gottlöber, S. & Yepes, G. Astraeus – III. The environment and physical properties of reionization sources. Mon. Not. R. Astron. Soc. 506, 215–228 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).

    Google Scholar 

  • Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).

    ADS 

    Google Scholar 

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    ADS 
    CAS 

    Google Scholar 

  • Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization. Preprint at https://doi.org/10.48550/arXiv.2212.04026 (2022).

  • Weaver, J. R. et al. The UNCOVER Survey: a first-look HST + JWST Catalog of 60,000 galaxies near A2744 and beyond. Astrophys. J. Suppl. Ser. 270, 7 (2024).

  • Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. Publ. Astron. Soc. Pacific 135, 028001 (2023).

    ADS 

    Google Scholar 

  • Brammer, G. Grizli: Grism redshift and line analysis software. Astrophysics Source Code Library, record ascl:1905.001 (2019).

  • Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

    ADS 

    Google Scholar 

  • Steinhardt, C. L. et al. The BUFFALO HST Survey. Astrophys. J. Suppl. Ser. 247, 64 (2020).

    ADS 

    Google Scholar 

  • Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    CAS 

    Google Scholar 

  • Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, A81 (2022).

    CAS 

    Google Scholar 

  • Heintz, K. E. et al. Extreme damped Lyman-α absorption in young star-forming galaxies at z = 9 − 11. Preprint at https://doi.org/10.48550/arXiv.2306.00647 (2023).

  • Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pacific 98, 609–617 (1986).

    ADS 
    CAS 

    Google Scholar 

  • Bouwens, R. J., Illingworth, G., Ellis, R. S., Oesch, P. & Stefanon, M. z 2–9 galaxies magnified by the Hubble Frontier Field clusters. II. Luminosity functions and constraints on a faint-end turnover. Astrophys. J. 940, 55 (2022).

    ADS 

    Google Scholar 

  • Brammer, G., Strait, V., Matharu, J. & Momcheva, I. grizli. Zenodo zenodo.org/records/6672538 (2022).

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    ADS 

    Google Scholar 

  • Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    ADS 

    Google Scholar 

  • Pascale, M. et al. Unscrambling the lensed galaxies in JWST images behind SMACS 0723. Astrophys. J. Lett. 938, L6 (2022).

    ADS 

    Google Scholar 

  • Bacon, R. et al. The MUSE second-generation VLT instrument. In Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) 773508 (SPIE, 2010).

  • Mahler, G. et al. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images. Mon. Not. R. Astron. Soc. 473, 663–692 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Richard, J. et al. An atlas of MUSE observations towards twelve massive lensing clusters. Astron. Astrophys. 646, A83 (2021).

    Google Scholar 

  • Bergamini, P. et al. The GLASS-JWST Early Release Science Program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).

    ADS 

    Google Scholar 

  • Zitrin, A. et al. Lyα emission from a luminous z = 8.68 galaxy: implications for galaxies as tracers of cosmic reionization. Astrophys. J. Lett. 810, L12 (2015).

    ADS 

    Google Scholar 

  • Furtak, L. J. et al. Constraining the physical properties of the first lensed z 9–16 galaxy candidates with JWST. Mon. Not. R. Astron. Soc. 519, 3064–3075 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS 

    Google Scholar 

  • Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    ADS 

    Google Scholar 

  • Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, A95 (2011).

    Google Scholar 

  • Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofís. 53, 385–438 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear–characterizing galaxy stellar populations from rest-frame 1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).

    ADS 

    Google Scholar 

  • Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Google Scholar 

  • Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).

    Google Scholar 

  • Chevallard, J. & Charlot, S. Modelling and interpreting spectral energy distributions of galaxies with beagle. Mon. Not. R. Astron. Soc. 462, 1415–1443 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Ferland, G. J. et al. The 2013 Release of Cloudy. Rev. Mex. Astron. Astrofís. 49, 137–163 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Gutkin, J., Charlot, S. & Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 462, 1757–1774 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacific 115, 763–795 (2003).

    ADS 

    Google Scholar 

  • Pei, Y. C. Interstellar dust from the Milky Way to the magellanic clouds. Astrophys. J. 395, 130–139 (1992).

    ADS 

    Google Scholar 

  • Inoue, A. K., Shimizu, I., Iwata, I. & Tanaka, M. An updated analytic model for attenuation by the intergalactic medium. Mon. Not. R. Astron. Soc. 442, 1805–1820 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Roberts-Borsani, G. et al. z 7 galaxies with Red Spitzer/IRAC [3.6]–[4.5] colors in the full CANDELS data set: the brightest-known galaxies at z  7–9 and a probable spectroscopic confirmation at z = 7.48. Astrophys. J. 823, 143 (2016).

    ADS 

    Google Scholar 

  • Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determination in deep high-z surveys. Astrophys. J. 676, 767–780 (2008).

    ADS 

    Google Scholar 

  • Leitherer, C. & Heckman, T. M. Synthetic properties of starburst galaxies. Astrophys. J. Suppl. Ser. 96, 9 (1995).

    ADS 

    Google Scholar 

  • Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, 1989).

  • Atek, H. et al. The star formation burstiness and ionizing efficiency of low-mass galaxies. Mon. Not. R. Astron. Soc. 511, 4464–4479 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Bouwens, R. J. et al. The Lyman-continuum photon production efficiency ξion of z ~ 4–5 galaxies from IRAC-based Hα measurements: implications for the escape fraction and cosmic reionization. Astrophys. J. 831, 176 (2016).

    ADS 

    Google Scholar 

  • Matthee, J. et al. The production and escape of Lyman-continuum radiation from star-forming galaxies at z ~ 2 and their redshift evolution. Mon. Not. R. Astron. Soc. 465, 3637–3655 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Nanayakkara, T. et al. Reconstructing the observed ionizing photon production efficiency at z ~ 2 using stellar population models. Astrophys. J. 889, 180 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Matthee, J. et al. EIGER. II. First spectroscopic characterization of the young stars and ionized gas associated with strong Hβ and [O III] line emission in galaxies at z = 5–7 with JWST. Astrophys. J. 950, 67 (2023).

    ADS 

    Google Scholar 

  • Sun, F. et al. First sample of Hα+[O III]λ5007 line emitters at z > 6 through JWST/NIRCam slitless spectroscopy: physical properties and line-luminosity functions. Astrophys. J. 953, 53 (2023).

    ADS 

    Google Scholar 

  • Tang, M. et al. JWST/NIRSpec spectroscopy of z = 7–9 star-forming galaxies with CEERS: new insight into bright Lyα emitters in ionized bubbles. Mon. Not. R. Astron. Soc. 526, 1657–1686 (2023).

    ADS 

    Google Scholar 

  • Saxena, A. et al. JADES: The production and escape of ionizing photons from faint Lyman-alpha emitters in the epoch of reionization. Preprint at https://doi.org/10.48550/arXiv.2306.04536 (2023).

  • Prieto-Lyon, G. et al. The production of ionizing photons in UV-faint z ~ 3–7 galaxies. Astron. Astrophys. 672, A186 (2023).

    CAS 

    Google Scholar 

  • Flury, S. R. et al. The low-redshift Lyman Continuum Survey. I. New, diverse local Lyman continuum emitters. Astrophys. J. Suppl. Ser. 260, 1 (2022).

  • Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).

    ADS 

    Google Scholar 

  • Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) = 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).

  • Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass-metallicity relation from z = 0 to z 3.3. Astrophys. J. 914, 19 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Sanders, R. L., Shapley, A. E., Topping, M. W., Reddy, N. A. & Brammer, G. B. Direct Te-based metallicities of z = 2–9 galaxies with JWST/NIRSpec: empirical metallicity calibrations applicable from reionization to cosmic noon. Preprint at https://doi.org/10.48550/arXiv.2303.08149 (2023).

  • Stanway, E. R. & Eldridge, J. J. Initial mass function variations cannot explain the ionizing spectrum of low metallicity starbursts. Astron. Astrophys. 621, A105 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoci. Argentina Astron. Plata Argentina 6, 41–43 (1963).

    ADS 

    Google Scholar 

  • Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Software 8, 5703 (2023).

  • Hoffman, M. D. & Gelman, A. et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    MathSciNet 

    Google Scholar 

  • Phan, D., Pradhan, N. & Jankowiak, M. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Preprint at https://arxiv.org/abs/1912.11554 (2019).

  • Holwerda, B. W. et al. The sizes of candidate z ~ 9-10 galaxies: confirmation of the bright CANDELS sample and relation with luminosity and mass. Astrophys. J. 808, 6 (2015).

    ADS 

    Google Scholar 

  • Ferrara, A., Pallottini, A. & Dayal, P. On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522, 3986–3991 (2023).

  • Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Google Scholar 

  • Astropy Collaboration. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    ADS 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  • Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://zenodo.org/records/8314675 (2022).

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1111.4246 (2011).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *