Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).
Google Scholar
Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ. Science 273, 325–329 (1996).
Google Scholar
Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).
Google Scholar
Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).
Google Scholar
Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
Google Scholar
Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).
Google Scholar
Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990).
Google Scholar
Trivedi, N. & Randeria, M. Deviations from Fermi-liquid behavior above Tc in 2D short coherence length superconductors. Phys. Rev. Lett. 75, 312 (1995).
Google Scholar
Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).
Google Scholar
Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).
Google Scholar
Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).
Google Scholar
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Google Scholar
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
Google Scholar
Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Google Scholar
Stajic, J. et al. Nature of superfluidity in ultracold Fermi gases near Feshbach resonances. Phys. Rev. A 69, 063610 (2004).
Google Scholar
Zwerger, W. (ed.) The BCS–BEC Crossover and the Unitary Fermi Gas (Springer, 2012).
Randeria, M. & Taylor, E. Crossover from Bardeen–Cooper–Schrieffer to Bose–Einstein condensation and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).
Google Scholar
Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science 305, 1128–1130 (2004).
Google Scholar
Schunck, C. H., Shin, Y., Schirotzek, A. & Ketterle, W. Determination of the fermion pair size in a resonantly interacting superfluid. Nature 454, 739–743 (2008).
Google Scholar
Murthy, P. A. et al. High-temperature pairing in a strongly interacting two-dimensional Fermi gas. Science 359, 452–455 (2018).
Google Scholar
Stewart, J. T., Gaebler, J. P. & Jin, D. S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).
Google Scholar
Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).
Google Scholar
Feld, M., Fröhlich, B., Vogt, E., Koschorreck, M. & Köhl, M. Observation of a pairing pseudogap in a two-dimensional Fermi gas. Nature 480, 75–78 (2011).
Google Scholar
Mueller, E. J. Review of pseudogaps in strongly interacting Fermi gases. Rep. Prog. Phys. 80, 104401 (2017).
Google Scholar
Schneider, W. & Randeria, M. Universal short-distance structure of the single-particle spectral function of dilute Fermi gases. Phys. Rev. A 81, 021601 (2010).
Google Scholar
Nascimbène, S. et al. Fermi-liquid behavior of the normal phase of a strongly interacting gas of cold atoms. Phys. Rev. Lett. 106, 215303 (2011).
Google Scholar
Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).
Google Scholar
Mukherjee, B. et al. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).
Google Scholar
Baird, L., Wang, X., Roof, S. & Thomas, J. E. Measuring the hydrodynamic linear response of a unitary Fermi gas. Phys. Rev. Lett. 123, 160402 (2019).
Google Scholar
Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).
Google Scholar
Baym, G., Pethick, C. J., Yu, Z. & Zwierlein, M. W. Coherence and clock shifts in ultracold Fermi gases with resonant interactions. Phys. Rev. Lett. 99, 190407 (2007).
Google Scholar
Mukherjee, B. et al. Spectral response and contact of the unitary Fermi gas. Phys. Rev. Lett. 122, 203402 (2019).
Google Scholar
Robaszkiewicz, S., Micnas, R. & Chao, K. A. Thermodynamic properties of the extended Hubbard model with strong intra-atomic attraction and an arbitrary electron density. Phys. Rev. B 23, 1447 (1981).
Google Scholar
Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985).
Google Scholar
Sá de Melo, C. A. R., Randeria, M. & Engelbrecht, J. R. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993).
Google Scholar
Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).
Google Scholar
Chen, Q., He, Y., Chien, C.-C. & Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates. Rep. Prog. Phys. 72, 122501 (2009).
Google Scholar
Ku, M. J. H., Sommer, A. T., Cheuk, L. W. & Zwierlein, M. W. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563–567 (2012).
Google Scholar
Haussmann, R., Punk, M. & Zwerger, W. Spectral functions and rf response of ultracold fermionic atoms. Phys. Rev. A 80, 063612 (2009).
Google Scholar
Carcy, C. et al. Contact and sum rules in a near-uniform Fermi gas at unitarity. Phys. Rev. Lett. 122, 203401 (2019).
Google Scholar
Chen, Q. & Levin, K. Momentum resolved radio frequency spectroscopy in trapped Fermi gases. Phys. Rev. Lett. 102, 190402 (2009).
Google Scholar
Biss, H. et al. Excitation spectrum and superfluid gap of an ultracold Fermi gas. Phys. Rev. Lett. 128, 100401 (2022).
Google Scholar
Magierski, P., Wlazłowski, G., Bulgac, A. & Drut, J. E. Finite-temperature pairing gap of a unitary Fermi gas by quantum Monte Carlo calculations. Phys. Rev. Lett. 103, 210403 (2009).
Google Scholar
Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093 (1998).
Google Scholar
Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS–BEC crossover. Phys. Rev. A 75, 023610 (2007).
Google Scholar
Kondo, T. et al. Point nodes persisting far beyond Tc in Bi2212. Nat. Commun. 6, 7699 (2015).
Google Scholar
Esslinger, T. Fermi–Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).
Google Scholar
Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).
Google Scholar
Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).
Google Scholar
Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P. & Törmä, P. The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Rep. Prog. Phys. 81, 046401 (2018).
Google Scholar
Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).
Google Scholar
Pasienski, M. & DeMarco, B. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express 16, 2176–2190 (2008).
Google Scholar
Murthy, P. A. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).
Google Scholar
Ries, M. G. et al. Observation of pair condensation in the quasi-2D BEC–BCS crossover. Phys. Rev. Lett. 114, 230401 (2015).
Google Scholar
Ketterle, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cim. 31, 247–422 (2008).
Google Scholar
Duan, Z.-X., Wu, W.-T., Lin, Y.-T. & Yang, S.-J. Simple and active magnetic-field stabilization for cold atom experiments. Rev. Sci. Instrum. 93, 123201 (2022).
Google Scholar
Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019).
Google Scholar
Borkowski, M. et al. Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances. Rev. Sci. Instrum. 94, 073202 (2023).
Google Scholar
Xu, X.-T. et al. Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum. 90, 054708 (2019).
Google Scholar
Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics, Vol. I, 522–523 (Wiley-VCH, 2020).
Riou, J.-F. et al. Theoretical tools for atom-laser-beam propagation. Phys. Rev. A 77, 033630 (2008).
Google Scholar
Horikoshi, M. et al. Appropriate probe condition for absorption imaging of ultracold 6Li atoms. J. Phys. Soc. Japan 86, 104301 (2017).
Google Scholar
Ockeloen, C. F., Tauschinsky, A. F., Spreeuw, R. J. C. & Whitlock, S. Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010).
Google Scholar
Stancik, A. L. & Brauns, E. B. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 47, 66–69 (2008).
Google Scholar