Strange IndiaStrange India


  • Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Höpfner, M. et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608–612 (2019).

    Article 
    ADS 

    Google Scholar 

  • Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl Acad. Sci. USA 119, e2121998119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, B. J. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. Y. et al. Improved global agricultural crop- and animal-specific ammonia emissions during 1961–2018. Agr. Ecosy. Environ. 344, 108289 (2023).

    Article 
    CAS 

    Google Scholar 

  • Xu, R. T. et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: empirical and process-based estimates and uncertainty. Glob. Change Biol. 25, 314–326 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ma, R. Y. et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors. Glob. Change Biol. 27, 855–867 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhan, X. Y. et al. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 55, 1329–1338 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ferrario, M. et al. EDGAR v.6.1. Global Air Pollutant Emissions. European Commission, Joint Research Centre (JRC) http://data.europa.eu/89h/df521e05-6a3b-461c-965a-b703fb62313e (2022).

  • Ladha, J. K. et al. Achieving the sustainable development goals in agriculture: the crucial role of nitrogen in cereal-based systems. Adv. Agron. 163, 39–116 (2020).

    Article 

    Google Scholar 

  • Fesenfeld, L. P., Schmidt, T. S. & Schrode, A. Climate policy for short- and long-lived pollutants. Nat. Clim. Change 8, 934–936 (2018).

    Article 
    ADS 

    Google Scholar 

  • Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Crippa, M. et al. Gridded emissions of air pollutants for the period 1970-2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018).

    Article 
    ADS 

    Google Scholar 

  • Luo, Z. et al. Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018. Atmos. Chem. Phys. 22, 10375–10388 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Aneja, V. P., Schlesinger, W. H., Li, Q., Nahas, A. & Battye, W. H. Characterization of the global sources of atmospheric ammonia from agricultural soils. J. Geophys. Res-Atmos. 125, e2019JD031684 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ma, R. et al. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 12, 6308 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. et al. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2O emissions in global croplands. Glob. Change Biol. 28, 4409–4422 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sha, Z. P. et al. Improved soil-crop system management aids in NH3 emission mitigation in China. Environ. Pollut. 289, 117844 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ti, C., Xia, L., Chang, S. X. & Yan, X. Y. Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environ. Pollut. 245, 141–148 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, L. L. & Yan, X. Y. How to feed the world while reducing nitrogen pollution. Nature 613, 34–35 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shahzad, A. N., Qureshi, M. K., Wakeel, A. & Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2, 1106–1114 (2019).

    Article 

    Google Scholar 

  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, P. et al. Role of organic and conservation agriculture in ammonia emissions and crop productivity in China. Environ. Sci. Technol. 56, 2977–2989 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, P. et al. Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options. Agric. For. Meteorol. 272-273, 1–11 (2019).

    Article 
    ADS 

    Google Scholar 

  • Li, T. et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Change Biol. 24, e511–e521 (2018).

    Article 

    Google Scholar 

  • Lam, S. K. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat. Food 3, 575–580 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kanter, D. R. & Searchinger, T. D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustain. 1, 544–552 (2018).

    Article 

    Google Scholar 

  • Timilsena, Y. P. et al. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food. Agr. 95, 1131–1142 (2015).

    Article 
    CAS 

    Google Scholar 

  • Duan, J. K. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014–1022 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, P. et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978-2017. Nat. Food 3, 356–366 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, L. L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?. Environ. Sci. Technol. 51, 7450–7457 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020).

    Article 
    CAS 

    Google Scholar 

  • Erickson, E. D. et al. Biogas production in United States dairy farms incentivized by electricity policy changes. Nat. Sustain. 6, 438–446 (2023).

    Article 

    Google Scholar 

  • Wu, Y. Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, C. C., Zhang, X. M., Reis, S. & Gu, B. J. Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability. Agr. Ecosyst. Environ. 333, 107950 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Ammonia emissions from croplands decrease with farm size in China. Environ. Sci. Technol. 56, 9915–9923 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, K. et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, Z.-L. et al. Significant contributions of combustion-related sources to ammonia emissions. Nat. Commun. 13, 7710 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guardia, G. et al. Increasing N use efficiency while decreasing gaseous N losses in a non-tilled wheat (Triticum aestivum L.) crop using a double inhibitor. Agr. Ecosyst. Environ. 319, 107546 (2021).

    Article 
    CAS 

    Google Scholar 

  • Recio, J. et al. Joint mitigation of NH3 and N2O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma 373, 114423 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yu, F., Wei, C., Deng, P., Peng, T. & Hu, X. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Sci. Adv. 7, eabf4130 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21 (1969).

    Article 

    Google Scholar 

  • Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. B. 26, 211–252 (1964).

    Google Scholar 

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Biau, G. & Scornet, E. A random forest guided tour. Test 25, 197–227 (2016).

    Article 
    MathSciNet 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Ishwaran, H., Kogalur, U. B., Gorodeski, E. Z., Minn, A. J. & Lauer, M. S. High-dimensional variable selection for survival data. J. Am. Stat. Assoc. 105, 205–217 (2010).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Zhang, K., Li, X., Zheng, D. H., Zhang, L. & Zhu, G. F. Estimation of global irrigation water use by the integration of multiple satellite observations. Water Resour. Res. 58, e2021WR030031 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010).

    Article 

    Google Scholar 

  • Tian, H. Q. et al. History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019. Earth Syst. Sci. Data 14, 4551–4568 (2022).

    Article 
    ADS 

    Google Scholar 

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cui, X. Q. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2, 886–893 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). FAOSTAT: FAO Statistical Databases (FAO, 2022); https://www.fao.org/food-agriculture-statistics/en/.

  • IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 
    ADS 

    Google Scholar 

  • Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *