Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).
Google Scholar
Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
Google Scholar
Swift, L., Hunter, P. R., Lees, A. C. & Bell, D. J. Wildlife trade and the emergence of infectious diseases. EcoHealth 4, 25 (2007).
Google Scholar
World Wildlife Crime Report: Trafficking in Protected Species (United Nations Office on Drugs and Crime, 2020).
Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Phil. Trans. R. Soc. B 368, 20120303 (2013).
Google Scholar
Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 366, 71–76 (2019).
Google Scholar
Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife- threats to biodiversity and human health. Science 287, 443–449 (2000).
Google Scholar
Morton, O., Scheffers, B. R., Haugaasen, T. & Edwards, D. P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. 5, 540–548 (2021).
Google Scholar
Minin, E. D. et al. Identifying global centers of unsustainable commercial harvesting of species. Sci. Adv. 5, eaau2879 (2019).
Google Scholar
Cheng, W., Xing, S. & Bonebrake, T. C. Recent pangolin seizures in China reveal priority areas for intervention. Conserv. Lett. 10, 757–764 (2017).
Google Scholar
Zhou, Z. & Jiang, Z. International trade status and crisis for snake species in China. Conserv. Biol. 18, 1386–1394 (2004).
Google Scholar
Morcatty, T. Q. et al. Illegal trade in wild cats and its link to Chinese-led development in Central and South America. Conserv. Biol. 34, 1525–1535 (2020).
Google Scholar
Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).
Google Scholar
Fan, P.-F., Fei, H.-L. & Luo, A.-D. Ecological extinction of the critically endangered northern white-cheeked gibbon Nomascus leucogenys in China. Oryx 48, 52–55 (2014).
Google Scholar
Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
Google Scholar
Hinsley, A. et al. Building sustainability into the Belt and Road Initiative’s Traditional Chinese Medicine trade. Nat. Sustain 3, 96–100 (2020).
Google Scholar
Mittermeier, R. A., Robles Gil, P. & Mittermeier, C. G. Megadiversity: Earth’s Biologically Wealthiest Nations (CEMEX, 1997).
Fan, P.-F., Yang, L., Liu, Y. & Lee, T. M. Build up conservation research capacity in China for biodiversity governance. Nat. Ecol. Evol. 4, 1162–1167 (2020).
Google Scholar
Li, Y. & Wilcove, D. S. Threats to vertebrate species in China and the United States. BioScience 55, 147–153 (2005).
Google Scholar
Liang, W., Cai, Y. & Yang, C.-C. Extreme levels of hunting of birds in a remote village of Hainan Island, China. Bird Conserv. Int. 23, 45–52 (2013).
Google Scholar
Sreekar, R. et al. The use of species–area relationships to partition the effects of hunting and deforestation on bird extirpations in a fragmented landscape. Divers. Distrib. 21, 441–450 (2015).
Google Scholar
Gong, S., Wang, J., Shi, H., Song, R. & Xu, R. Illegal trade and conservation requirements of freshwater turtles in Nanmao, Hainan province, China. Oryx 40, 331–336 (2006).
Google Scholar
Kamp, J. et al. Global population collapse in a superabundant migratory bird and illegal trapping in China. Conserv. Biol. 29, 1684–1694 (2015).
Google Scholar
The Supreme People’s Court of China The Interpretation of Several Issues on the Specific Application of Law in the Trial of Criminal Cases of Destruction of Wildlife Resources (National Laws and Regulations Database, 2000); https://flk.npc.gov.cn/detail.html?NDAyODgxZTQ1ZmZmZjk1MDAxNjAwMDFhY2IyNTAwNmM.
Gao, H. et al. Using expert knowledge to identify key threats and conservation strategies for wildlife: A case study with bats in China. Glob. Ecol. Conserv. 41, e02364 (2023).
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
Google Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Google Scholar
Chan, H.-K., Shoemaker, K. T. & Karraker, N. E. Demography of Quasipaa frogs in China reveals high vulnerability to widespread harvest pressure. Biol. Conserv. 170, 3–9 (2014).
Google Scholar
Chang, C. H. et al. The pleasure of pursuit: recreational hunters in rural Southwest China exhibit low exit rates in response to declining catch. Ecol. Soc. 22, 43 (2017).
Google Scholar
Ni, Q. et al. Spatial heterogeneity and socioeconomic transformation challenge the prevention of illegal wildlife consumption in China. Biol. Conserv. 275, 109751 (2022).
Google Scholar
Shao, M.-L., Newman, C., Buesching, C. D., Macdonald, D. W. & Zhou, Z.-M. Understanding wildlife crime in China: Socio-demographic profiling and motivation of offenders. PLoS ONE 16, e0246081 (2021).
Google Scholar
Heim, W. et al. East Asian buntings: ongoing illegal trade and encouraging conservation responses. Conserv. Sci. Pract. 3, e405 (2021).
Google Scholar
Gao, J. et al. China’s ecological conservation redline: a solution for future nature conservation. Ambio 49, 1519–1529 (2020).
Google Scholar
Shivaprakash, K. N., Sen, S., Paul, S., Kiesecker, J. M. & Bawa, K. S. Mammals, wildlife trade, and the next global pandemic. Curr. Biol. 31, 3671–3677.e3 (2021).
Google Scholar
Shi, B. et al. Identifying key bird species and geographical hotspots of avian influenza A (H7N9) virus in China. Infect. Dis. Poverty 7, 97 (2018).
Google Scholar
Yang, N., Liu, P., Li, W. & Zhang, L. Permanently ban wildlife consumption. Science 367, 1434–1434 (2020).
Google Scholar
Xiao, L., Lu, Z., Li, X., Zhao, X. & Li, B. V. Why do we need a wildlife consumption ban in China? Curr. Biol. 31, R168–R172 (2021).
Google Scholar
Koh, L. P., Li, Y. & Lee, J. S. H. The value of China’s ban on wildlife trade and consumption. Nat. Sust. 4, 2–4 (2021).
Google Scholar
Jiao, Y. & Lee, T. M. China’s conservation strategy must reconcile its contemporary wildlife use and trade practices. Front. Ecol. Evol. 9, 340 (2021).
Google Scholar
Huang, G. et al. Wildlife conservation and management in China: achievements, challenges and perspectives. Natl Sci. Rev. 8, nwab042 (2021).
Google Scholar
Yu, Y., Wetzler, A., Yang, X., Tang, R. & Zhang, L. Significant and timely ivory trade restrictions in both China and the United States are critical to save elephants. Conserv. Lett. 10, 596–601 (2017).
Google Scholar
Jiang, X., Cui, S., Liang, B., Shuai, H. & Liu, J. Tigers vs. flies: impact of official ranks on judicial trials in PRC’s anti-corruption campaign. Crime Law Soc. Change 80, 51–78 (2023).
Google Scholar
Ru, H. & Zou, K. How do individual politicians affect privatization? Evidence from China. Rev. Finance 26, 637–672 (2022).
Google Scholar
Wang, K. et al. The updated checklists of amphibians and reptiles of China. Biodiversity Sci. 28, 189–218 (2020).
Google Scholar
Zheng, G. A Checklist on the Classification and Distribution of the Birds of China (Science Press, 2017).
Jiang, Z. et al. China’s mammalian diversity. Biodivers. Sci. 23, 351–364 (2015).
Google Scholar
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Google Scholar
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
Google Scholar
Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).
Google Scholar
Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20, 81 (2020).
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).
Google Scholar
Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).
Google Scholar
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
Google Scholar
Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M. & Raia, P. Fast production of large, time-calibrated, informal supertrees with tree.merger. Palaeontology 65, e12588 (2022).
Google Scholar
Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).
Google Scholar
Orme, D. caper: Comparative Analysis of Phylogenetics and Evolution in R. R package version 0.5.2 1-36 https://cran.r-project.org/web/packages/caper/ (2013).
Liang, D., Giam, X., Hu, S., Ma, L. & Wilcove, D. S. Data and code for: Assessing the illegal hunting of native wildlife within China. Figshare https://doi.org/10.6084/m9.figshare.22114913 (2023).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).
Google Scholar
Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).
Google Scholar
Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2015: Globe. Zenodo https://doi.org/10.5281/zenodo.3939038 (2019).
Xu, X. Multi-Year Boundary Data of Administrative Divisions of Prefectures and Cities in China (Registration and Publication System of Resources and Environmental Science Data, 2023); https://doi.org/10.12078/2023010102.
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Google Scholar
Zhang, Y. et al. Ecological network analysis of embodied energy exchanges among the seven regions of China. J. Ind. Ecol. 20, 472–483 (2016).
Google Scholar
Ji, Z. Physical Geography of China (Higher Education Press, 1998).
Zhang, H. & Lahr, M. L. China’s energy consumption change from 1987 to 2007: a multi-regional structural decomposition analysis. Energy Policy 67, 682–693 (2014).
Google Scholar
Hu, S., Cheng, Y., Pan, R., Zou, F. & Lee, T. M. Understanding the social impacts of enforcement activities on illegal wildlife trade in China. Ambio 51, 1643–1657 (2022).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); http://www.R-project.org/.
Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.47 https://cran.r-project.org/web/packages/MuMIn/ (2020).
DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.3.3 https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (2020).
Bivand, R. R packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).
Google Scholar
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.1-5 https://cran.r-project.org/web/packages/raster/index.html (2020).
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).
Google Scholar
Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
Google Scholar
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
Google Scholar
Ho, L. s. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
Google Scholar