Strange IndiaStrange India


  • Chomiuk, L., Metzger, B. D. & Shen, K. J. New insights into classical novae. Annu. Rev. Astron. Astrophys. 59, 391-444 (2021).

  • Starrfield, S., Iliadis, C. & Hix, W. R. The thermonuclear runaway and the classical nova outburst. Publ. Astron. Soc. Pacific 128, 051001 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hillman, Y., Prialnik, D., Kovetz, A., Shara, M. M. & Neill, J. D. Nova multiwavelength light curves: predicting UV precursor flashes and pre-maximum halts. Mon. Not. R. Astron. Soc. 437, 1962–1975 (2014).

    ADS 
    Article 

    Google Scholar 

  • Starrfield, S., Truran, J. W., Sparks, W. M., Krautter, J. & MacDonald, J. in Physics of Classical novae (eds Cassatella, A. & Viotti, R.) 306–310 (Springer, 1990).

  • Krautter, J. in RS Ophiuchi (2006) and the Recurrent Nova Phenomenon (eds Evans, A. et al.) Astron. Soc. Pacific Conf. Ser 401, 139 (Astronomical Society of the Pacific, 2008).

  • Kato, M., Saio, H. & Hachisu, I. Multi-wavelength light curve model of the one-year recurrence period Nova M31N 2008-12A. Astrophys. J. 808, 52 (2015).

    ADS 
    Article 

    Google Scholar 

  • Kato, M. et al. X-ray flashes in recurrent novae: M31N 2008-12a and the implications of the Swift nondetection. Astrophys. J. 830, 40 (2016).

    ADS 
    Article 

    Google Scholar 

  • Morii, M., Yamaoka, H., Mihara, T., Matsuoka, M. & Kawai, N. Search for soft X-ray flashes at the fireball phase of classical/recurrent novae using MAXI/GSC data. Publ. Astron. Soc. Japan 68, S11 (2016).

    Article 

    Google Scholar 

  • Predehl, P. et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 647, A1 (2021).

    CAS 
    Article 

    Google Scholar 

  • Sunyaev, R. et al. SRG X-ray orbital observatory. Its telescopes and first scientific results. Astron. Astrophys. 656, A132 (2021).

    CAS 
    Article 

    Google Scholar 

  • McNaught, R. H. Apparent nova in Reticulum. CBET 4811 (2020).

  • Aydi, E. et al. SALT spectroscopic classification of MGAB-V207 as a classical nova. ATeL 13867 (2020).

  • Carr, A., Said, K., Davis, T. M., Lidman, C. & Tucker, B. E. WiFeS follow-up observations of the naked-eye nova associated to MGAB-V207. ATeL13874 (2020).

  • Sokolovsky, K. V. et al. NuSTAR detection of Nova Reticuli 2020 = MGAB-V207. ATeL 13900 (2020).

  • McNaught, R. H. Nova Reticuli 2020. CBET 4812 (2020).

  • Li, K.-L. et al. Fermi-LAT detection of the naked-eye classical nova MGAB-V207. ATeL 13868 (2020).

  • Sokolovsky, K. V. et al. The first nova eruption in a novalike variable: YZ Ret as seen in X-rays and gamma-rays. Preprint at https://arxiv.org/abs/2108.03241 (2021).

  • Kilkenny, D. et al. The Edinburgh-Cape Blue Object Survey – IV. Zone 3: Galactic latitudes –40° > b > –50°. Mon. Not. R. Astron. Soc. 453, 1879–1887 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schaefer, B. E. Discovery of 13 new orbital periods for classical novae. Res. Notes American Astron. Soc. 5, 150 (2021).

    ADS 

    Google Scholar 

  • Dauser, T. et al. SIXTE: a generic X-ray instrument simulation toolkit. Astron. Astrophys. 630, A66 (2019).

    Article 

    Google Scholar 

  • Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, L91–L95 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Suleimanov, V. F., Mauche, C. W., Zhuchkov, R. Y. & Werner, K. Fitting the Chandra LETG Spectrum of SS Cygni in Outburst with Model Atmosphere Spectra in 18th European White Dwarf Workshop Vol. 469 (eds Krzesiński, J. et al.) 349 (Astronomical Society of the Pacific, 2013).

  • Suleimanov, V., Hertfelder, M., Werner, K. & Kley, W. Modeling the EUV spectra of optically thick boundary layers of dwarf novae in outburst. Astron. Astrophys. 571, A55 (2014).

    ADS 
    Article 

    Google Scholar 

  • Izzo, L. et al. UVES observations of Nova Reticuli 2020 during minimal science operations show it is entering the nebular phase. ATeL 14048 (2020).

  • José, J. & Hernanz, M. Nucleosynthesis in classical novae: CO versus ONe white dwarfs. Astrophys. J. 494, 680–690 (1998).

    ADS 
    Article 

    Google Scholar 

  • Aydi, E. et al. Early spectral evolution of classical novae: consistent evidence for multiple distinct outflows. Astrophys. J. 905, 62 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bédard, A., Bergeron, P. & Fontaine, G. Measurements of physical parameters of white dwarfs: a test of the mass-radius relation. Astrophys. J. 848, 11 (2017).

    ADS 
    Article 

    Google Scholar 

  • Sokolovsky, K. et al. Super-soft X-ray emission of Nova Reticuli 2020. ATeL 14043 (2020).

  • Kato, M., Saio, H. & Hachisu, I. A self-consistent model for a full cycle of recurrent novaewind mass-loss rate and x-ray luminosity. Astrophys. J. 838, 153 (2017).

    ADS 
    Article 

    Google Scholar 

  • Cao, Y. et al. Classical novae in Andromeda: light curves from the Palomar Transient Factory and GALEX. Astrophys. J. 752, 133 (2012).

    ADS 
    Article 

    Google Scholar 

  • Pietsch, W., Sala, G., Haberl, F. & Greiner, J. Detection of nova M31N 2007-07c with Swift UVOT in the UVW2 filter. ATEL 1149 (2007).

  • De, K. et al. A population of heavily reddened, optically missed novae from Palomar Gattini-IR: constraints on the galactic nova rate. Astrophys. J. 912, 19 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wilms, J., Allen, A. & McCray, R. On the absorption of x-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New Analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ballet, J. Pile-up on X-ray CCD instruments. Astron. Astrophys. Supp. 135, 371–381 (1999).

    ADS 
    Article 

    Google Scholar 

  • Davis, J. E. Event pileup in charge-coupled devices. Astrophys. J. 562, 575–582 (2001).

    ADS 
    Article 

    Google Scholar 

  • Tamba, T. et al. Simulation-based spectral analysis of X-ray CCD data affected by photon pile-up. Publ. Astron. Soc. Japan 74, 364-383 (2021).

  • Lampton, M., Margon, B. & Bowyer, S. Parameter estimation in X-ray astronomy. Astrophys. J. 208, 177–190 (1976).

    ADS 
    Article 

    Google Scholar 

  • Townsley, L. K. et al. Simulating CCDs for the Chandra Advanced CCD Imaging Spectrometer. Nucl. Inst. Methods Phys. Res. A 486, 716–750 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Seaton, M. J., Yan, Y., Mihalas, D. & Pradhan, A. K. Opacities for stellar envelopes. Mon. Not. R. Astron. Soc. 266, 805 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149–173 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pacific 129, 104502 (2017).

    ADS 
    Article 

    Google Scholar 

  • Pei, S. et al. NICER observations of Nova Ret 2020. ATeL 14067 (2020).

  • Drake, J. J. et al. Chandra high resolution X-ray spectroscopy of Nova Ret 2020. ATeL 14214 (2020).

  • Atwood, W. B. et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 697, 1071–1102 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wood, M. et al. Fermipy: An open-source Python package for analysis of Fermi-LAT Data in 35th International Cosmic Ray Conference (ICRC2017) (eds. Il Heung Park et al.) 301, 824 (Proceedings of Science, 2017).

  • Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    ADS 
    Article 

    Google Scholar 

  • Dennerl, K. et al. Determination of the eROSITA mirror half energy width (HEW) with subpixel resolution in Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray Vol. 8443 (eds Takahashi, T. et al.) 844350 (SPIE, 2012).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *