Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).
Google Scholar
Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).
Google Scholar
Peng, L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).
Google Scholar
Shen, Z. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).
Google Scholar
Chen, H. et al. Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Mater. Today 52, 364–388 (2021).
Google Scholar
Liu, Y. et al. Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021).
Google Scholar
Liang, Z. et al. Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, e2200102 (2022).
Google Scholar
Rehman, S., Pope, M., Tao, S. & McCalla, E. Evaluating the effectiveness of in situ characterization techniques in overcoming mechanistic limitations in lithium–sulfur batteries. Energy Environ. Sci. 15, 1423–1460 (2022).
Google Scholar
Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).
Google Scholar
Zeng, C. et al. Dynamic investigation of battery materials via advanced visualization: from particle, electrode to cell level. Adv. Mater. 34, e2200777 (2022).
Google Scholar
Kong, L. et al. Current-density dependence of Li2S/Li2S2 growth in lithium–sulfur batteries. Energy Environ. Sci. 12, 2976–2982 (2019).
Google Scholar
Zhao, G.-X., Ahmed, W. H. Z. & Zhu, F.-L. Nitrogen-sulfur co-doped porous carbon preparation and its application in lithium-sulfur batteries. J. Electrochem. 27, 614–623 (2021).
Google Scholar
Pei, F. et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2, 323–336 (2018).
Google Scholar
Tsao, Y. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 3, 872–884 (2019).
Google Scholar
Nelson, J. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012).
Google Scholar
Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).
Google Scholar
Li, M. et al. Evidence of morphological change in sulfur cathodes upon irradiation by synchrotron X-rays. ACS Energy Lett. 7, 577–582 (2022).
Google Scholar
See, K. A. et al. Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li–S battery system. J. Am. Chem. Soc. 136, 16368–16377 (2014).
Google Scholar
Chen, J.-J. et al. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery. Chem. Mater. 27, 2048–2055 (2015).
Google Scholar
Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).
Google Scholar
Frey, H. et al. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).
Google Scholar
Kim, H. et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv. Energy Mater. 5, 1501306 (2015).
Google Scholar
Wang, Z. et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures. Small 16, 2001899 (2020).
Google Scholar
Xu, Z.-L. et al. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy Environ. Sci. 12, 3144–3155 (2019).
Google Scholar
Seo, H. K. et al. Direct visualization of lithium polysulfides and their suppression in liquid electrolyte. Nano Lett. 20, 2080–2086 (2020).
Google Scholar
Zhang, L. et al. Revealing the electrochemical charging mechanism of nanosized Li2S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 17, 5084–5091 (2017).
Google Scholar
Conder, J. et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017).
Google Scholar
Yang, G., Shi, S., Yang, J. & Ma, Y. Insight into the role of Li2S2 in Li–S batteries: a first-principles study. J. Mater. Chem. A 3, 8865–8869 (2015).
Google Scholar
Feng, Z. et al. Unravelling the role of Li2S2 in lithium–sulfur batteries: a first principles study of its energetic and electronic properties. J. Power Sources 272, 518–521 (2014).
Google Scholar
Paolella, A. et al. Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery. J. Power Sources 325, 641–645 (2016).
Google Scholar
Wagner, C. Theory of precipitate change by redissolution. Z. Elektrochem. 65, 581–591 (1961).
Google Scholar
Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).
Google Scholar
Viswanatha, R. & Sarma, D. D. in Nanomaterials Chemistry (eds Rao, C. N. R., Müller, A., Cheetham, A. K.) 139–170 (Wiley, 2007).
Gower, L. B. & Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210, 719–734 (2000).
Google Scholar
Smeets, P. J. et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 14, 394–399 (2015).
Google Scholar
Wallace, A. F. et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).
Google Scholar
De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).
Google Scholar
Min, Y. J. et al. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).
Google Scholar
Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).
Google Scholar
Müller, A. et al. Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide. Angew. Chem. Int. Ed. 37, 3360–3363 (1998).
Google Scholar
Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
Google Scholar
Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).
Google Scholar
Goodman, P. & Moodie, A. F. Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method. Acta Crystallogr. A30, 280–290 (1974).
Google Scholar
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).
Google Scholar
Zheng, H. et al. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009).
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
Le, J.-B., Fan, Q.-Y., Li, J.-Q. & Cheng, J. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface. Sci. Adv. 6, eabb1219 (2020).
Google Scholar
Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).
Google Scholar
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Google Scholar
Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).
Google Scholar
Lan, J., Hutter, J. & Iannuzzi, M. First-principles simulations of an aqueous CO/Pt(111) interface. J. Phys. Chem. C 122, 24068–24076 (2018).
Google Scholar
Dodda, L. S., Vaca, I. C. D., Tirado-Rives, J. & Jorgensen, W. L. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Google Scholar
Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).
Google Scholar
Zhang, Y. et al. Water-in-salt LiTFSI aqueous electrolytes. 1. Liquid structure from combined molecular dynamics simulation and experimental studies. J. Phys. Chem. B 125, 4501–4513 (2021).
Google Scholar
Hu, T. et al. Understanding structural and transport properties of dissolved Li2S8 in ionic liquid electrolytes through molecular dynamics simulations. ChemPhysChem 22, 419–429 (2021).
Google Scholar
Abbaspour, M., Akbarzadeh, H. & Zaeifi, S. Thermodynamics, structure, and dynamic properties of nanostructured water confined into B-, N-, and Si-doped graphene surfaces and carbon nanotubes. Ind. Eng. Chem. Res. 59, 9642–9654 (2020).
Google Scholar
Bernardes, C. E., Canongia Lopes, J. N. & Minas da Piedade, M. E. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)n (M = Cr, Fe, Ni, Mo, Ru, or W) compounds. J. Phys. Chem. A 117, 11107–11113 (2013).
Google Scholar
Jacobson, D. W. & Thompson, G. B. Revisting Lennard Jones, Morse, and N-M potentials for metals. Comp. Mater. Sci. 205, 111206 (2022).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Google Scholar
Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (2006).
Google Scholar