Strange IndiaStrange India


  • Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shen, Z. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chen, H. et al. Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Mater. Today 52, 364–388 (2021).

    Article 

    Google Scholar 

  • Liu, Y. et al. Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liang, Z. et al. Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, e2200102 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rehman, S., Pope, M., Tao, S. & McCalla, E. Evaluating the effectiveness of in situ characterization techniques in overcoming mechanistic limitations in lithium–sulfur batteries. Energy Environ. Sci. 15, 1423–1460 (2022).

    Article 

    Google Scholar 

  • Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zeng, C. et al. Dynamic investigation of battery materials via advanced visualization: from particle, electrode to cell level. Adv. Mater. 34, e2200777 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kong, L. et al. Current-density dependence of Li2S/Li2S2 growth in lithium–sulfur batteries. Energy Environ. Sci. 12, 2976–2982 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhao, G.-X., Ahmed, W. H. Z. & Zhu, F.-L. Nitrogen-sulfur co-doped porous carbon preparation and its application in lithium-sulfur batteries. J. Electrochem. 27, 614–623 (2021).

    CAS 

    Google Scholar 

  • Pei, F. et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2, 323–336 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tsao, Y. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 3, 872–884 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nelson, J. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).

    Article 
    CAS 

    Google Scholar 

  • Li, M. et al. Evidence of morphological change in sulfur cathodes upon irradiation by synchrotron X-rays. ACS Energy Lett. 7, 577–582 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • See, K. A. et al. Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li–S battery system. J. Am. Chem. Soc. 136, 16368–16377 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J.-J. et al. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery. Chem. Mater. 27, 2048–2055 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frey, H. et al. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv. Energy Mater. 5, 1501306 (2015).

    Article 

    Google Scholar 

  • Wang, Z. et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures. Small 16, 2001899 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xu, Z.-L. et al. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy Environ. Sci. 12, 3144–3155 (2019).

    Article 
    CAS 

    Google Scholar 

  • Seo, H. K. et al. Direct visualization of lithium polysulfides and their suppression in liquid electrolyte. Nano Lett. 20, 2080–2086 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Revealing the electrochemical charging mechanism of nanosized Li2S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 17, 5084–5091 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Conder, J. et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, G., Shi, S., Yang, J. & Ma, Y. Insight into the role of Li2S2 in Li–S batteries: a first-principles study. J. Mater. Chem. A 3, 8865–8869 (2015).

    Article 
    CAS 

    Google Scholar 

  • Feng, Z. et al. Unravelling the role of Li2S2 in lithium–sulfur batteries: a first principles study of its energetic and electronic properties. J. Power Sources 272, 518–521 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Paolella, A. et al. Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery. J. Power Sources 325, 641–645 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wagner, C. Theory of precipitate change by redissolution. Z. Elektrochem. 65, 581–591 (1961).

    CAS 

    Google Scholar 

  • Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article 
    ADS 

    Google Scholar 

  • Viswanatha, R. & Sarma, D. D. in Nanomaterials Chemistry (eds Rao, C. N. R., Müller, A., Cheetham, A. K.) 139–170 (Wiley, 2007).

  • Gower, L. B. & Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210, 719–734 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smeets, P. J. et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 14, 394–399 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wallace, A. F. et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Min, Y. J. et al. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Müller, A. et al. Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide. Angew. Chem. Int. Ed. 37, 3360–3363 (1998).

    3.0.CO;2-J” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291521-3773%2819981231%2937%3A24%3C3359%3A%3AAID-ANIE3359%3E3.0.CO%3B2-J” aria-label=”Article reference 40″ data-doi=”10.1002/(SICI)1521-3773(19981231)37:24<3359::AID-ANIE3359>3.0.CO;2-J”>Article 
    ADS 

    Google Scholar 

  • Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article 
    CAS 

    Google Scholar 

  • Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).

    Article 
    CAS 

    Google Scholar 

  • Goodman, P. & Moodie, A. F. Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method. Acta Crystallogr. A30, 280–290 (1974).

    Article 
    ADS 

    Google Scholar 

  • Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, H. et al. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Le, J.-B., Fan, Q.-Y., Li, J.-Q. & Cheng, J. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface. Sci. Adv. 6, eabb1219 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    Article 
    CAS 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 
    ADS 

    Google Scholar 

  • Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Lan, J., Hutter, J. & Iannuzzi, M. First-principles simulations of an aqueous CO/Pt(111) interface. J. Phys. Chem. C 122, 24068–24076 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dodda, L. S., Vaca, I. C. D., Tirado-Rives, J. & Jorgensen, W. L. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 

    Google Scholar 

  • Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Water-in-salt LiTFSI aqueous electrolytes. 1. Liquid structure from combined molecular dynamics simulation and experimental studies. J. Phys. Chem. B 125, 4501–4513 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, T. et al. Understanding structural and transport properties of dissolved Li2S8 in ionic liquid electrolytes through molecular dynamics simulations. ChemPhysChem 22, 419–429 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abbaspour, M., Akbarzadeh, H. & Zaeifi, S. Thermodynamics, structure, and dynamic properties of nanostructured water confined into B-, N-, and Si-doped graphene surfaces and carbon nanotubes. Ind. Eng. Chem. Res. 59, 9642–9654 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bernardes, C. E., Canongia Lopes, J. N. & Minas da Piedade, M. E. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)n (M = Cr, Fe, Ni, Mo, Ru, or W) compounds. J. Phys. Chem. A 117, 11107–11113 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacobson, D. W. & Thompson, G. B. Revisting Lennard Jones, Morse, and N-M potentials for metals. Comp. Mater. Sci. 205, 111206 (2022).

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (2006).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *