Strange IndiaStrange India


  • Rudolph, M. L., Lekić, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • van der Meer, D. G., van Hinsbergen, D. J. J. & Spakman, W. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).

    Article 
    ADS 

    Google Scholar 

  • Fukao, Y., Obayashi, M., Nakakuki, T. & the Deep Slab Project Group Stagnant slab: a review. Annu. Rev. Earth Planet. Sci. 37, 19–46 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–241 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gülcher, A. J. P., Gebhardt, D. J., Ballmer, M. D. & Tackley, P. J. Variable dynamic styles of primordial heterogeneity preservation in the Earth’s lower mantle. Earth Planet. Sci. Lett. 536, 116160 (2020).

    Article 

    Google Scholar 

  • Gülcher, A. J. P., Ballmer, M. D. & Tackley, P. J. Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth’s lower mantle. Solid Earth 12, 2087–2107 (2021).

    Article 
    ADS 

    Google Scholar 

  • Allègre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995).

    Article 
    ADS 

    Google Scholar 

  • Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source. Nature 555, 89–93 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2016).

    Article 
    ADS 

    Google Scholar 

  • Visser, K., Trampert, J., Lebedev, S. & Kennett, B. L. N. Probability of radial anisotropy in the deep mantle. Earth Planet. Sci. Lett. 270, 241–250 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. Solid Earth 120, 4278–4300 (2015).

    Article 
    ADS 

    Google Scholar 

  • Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nabiei, F. et al. Investigating magma ocean solidification on Earth through laser-heated diamond anvil cell experiments. Geophys. Res. Lett. 48, e2021GL092446 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, L. et al. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. Nat. Commun. 11, 548 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ko, B. et al. Calcium dissolution in bridgmanite in the Earth’s deep mantle. Nature 611, 88–92 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Sci. Adv. 1, e1500815 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mashino, I., Murakami, M., Miyajima, N. & Petitgirard, S. Experimental evidence for silica-enriched Earth’s lower mantle with ferrous iron dominant bridgmanite. Proc. Natl Acad. Sci. USA 117, 27899–27905 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ricolleau, A. et al. Density profile of pyrolite under the lower mantle conditions. Geophys. Res. Lett. 36, L06302 (2009).

    Article 
    ADS 

    Google Scholar 

  • Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B. & Ziberna, L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 543, 543–546 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351, 144–147 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Marquardt, H. & Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 8, 311–314 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tsujino, N. et al. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments. Sci. Adv. 8, eabm1821 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, J. & Lee, K. K. M. Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nat. Commun. 8, 1997 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shahnas, M. H., Pysklywec, R. N., Justo, J. F. & Yuen, D. A. Spin transition-induced anomalies in the lower mantle: implications for mid-mantle partial layering. Geophys. J. Int. 210, 765–773 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yoshino, T., Yamazaki, D., Ito, E. & Katsura, T. No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement. Geophys. Res. Lett. 35, L22303 (2008).

    Article 
    ADS 

    Google Scholar 

  • Civet, F., Thébault, E., Verhoeven, O., Langlais, B. & Saturnino, D. Electrical conductivity of the Earth’s mantle from the first Swarm magnetic field measurements. Geophys. Res. Lett. 42, 3338–3346 (2015).

    Article 
    ADS 

    Google Scholar 

  • Cordier, P. et al. Periclase deforms more slowly than bridgmanite under mantle conditions. Nature 613, 303–307 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, F. et al. Deformation of post-spinel under the lower mantle conditions. J. Geophys. Res. Solid Earth 127, e2021JB023586 (2022).

    Article 
    ADS 

    Google Scholar 

  • Liu, Z., Ishii, T. & Katsura, T. Rapid decrease of MgAlO2.5 component in bridgmanite with pressure. Geochem. Perspect. Lett. 5, 12–18 (2017).

    Article 

    Google Scholar 

  • Brodholt, J. P. Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature 407, 620–622 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fei, H. et al. Pressure destabilizes oxygen vacancies in bridgmanite. J. Geophys. Res. Solid Earth 126, e2021JB022437 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Z. et al. Stability and solubility of the FeAlO3 component in bridgmanite at uppermost lower mantle conditions. J. Geophys. Res. Solid Earth 125, e2019JB018447 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Immoor, J. et al. Weak cubic CaSiO3 perovskite in the Earth’s mantle. Nature 603, 276–279 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dannberg, J. et al. The importance of grain size to mantle dynamics and seismological observations. Geochem. Geophys. Geosyst. 18, 3034–3061 (2017).

    Article 
    ADS 

    Google Scholar 

  • Fei, H., Faul, U. & Katsura, T. The grain growth kinetics of bridgmanite at the topmost lower mantle. Earth Planet. Sci. Lett. 561, 116820 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yamazaki, D., Kato, T., Ohtani, E. & Toriumi, M. Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions. Science 274, 2052–2054 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Atkinson, H. V. Overview no. 65: theories of normal grain growth in pure single phase systems. Acta Metall. 36, 469–491 (1988).

    Article 
    CAS 

    Google Scholar 

  • Solomatov, V. S., El-Khozondar, R. & Tikare, V. Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems. Phys. Earth Planet. Inter. 129, 265–282 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yamazaki, D., Inoue, T., Okamoto, M. & Irifune, T. Grain growth kinetics of ringwoodite and its implication for rheology of the subducting slab. Earth Planet. Sci. Lett. 236, 871–881 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nishihara, Y., Shinmei, T. & Karato, S. Grain-growth kinetics in wadsleyite: effects of chemical environment. Phys. Earth Planet. Inter. 154, 30–43 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Z. & Karato, S. The effect of pressure on grain-growth kinetics in olivine aggregates with some geophysical applications. J. Geophys. Res. Solid Earth 126, e2020JB020886 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Hiraga, T., Tachibana, C., Ohashi, N. & Sano, S. Grain growth systematics for forsterite ± enstatite aggregates: effect of lithology on grain size in the upper mantle. Earth Planet. Sci. Lett. 291, 10–20 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guignard, J., Toplis, M. J., Bystricky, M. & Monnereau, M. Temperature dependent grain growth of forsterite–nickel mixtures: implications for grain growth in two-phase systems and applications to the H-chondrite parent body. Earth Planet. Sci. Lett. 443, 20–31 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Herwegh, M., Linckens, J., Ebert, A., Berger, A. & Brodhag, S. H. The role of second phases for controlling microstructural evolution in polymineralic rocks: a review. J. Struct. Geol. 33, 1728–1750 (2011).

    Article 
    ADS 

    Google Scholar 

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Karato, S.-I. Deformation of Earth Materials. An Introduction to the Rheology of Solid Earth Ch. 19, 338–362 (Cambridge Univ. Press, 2008).

  • Waszek, L., Schmerr, N. C. & Ballmer, M. D. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat. Commun. 9, 385 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fei, H. et al. A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci. Adv. 3, e1603024 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faul, U. & Jackson, I. Diffusion creep of dry, melt-free olivine. J. Geophys. Res. Solid Earth 112, B04204 (2007).

    Article 
    ADS 

    Google Scholar 

  • Zandonà, A. et al. Glass-forming ability and ZrO2 saturation limits in the magnesium aluminosilicate system. Ceram. Int. 48, 8433–8439 (2021).

    Article 

    Google Scholar 

  • Rubie, D. C., Karato, S., Yan, H. & O’Neill, H. S. C. Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Phys. Chem. Miner. 20, 315–322 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nabarro, F. R. N. Steady-state diffusional creep. Philos. Mag. 16, 231–237 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Coble, R. L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963).

    Article 
    ADS 

    Google Scholar 

  • Boioli, F. et al. Pure climb creep mechanism drives flow in Earth’s lower mantle. Sci. Adv. 3, e1601958 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reali, R. et al. The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Sci. Rep. 9, 2053 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, J. et al. Silicon and magnesium diffusion in a single crystal of MgSiO3 perovskite. J. Geophys. Res. Solid Earth 116, B12205 (2011).

    Article 
    ADS 

    Google Scholar 

  • Dobson, D. P., Dohmen, R. & Wiedenbeck, M. Self-diffusion of oxygen and silicon in MgSiO3 perovskite. Earth Planet. Sci. Lett. 270, 125–129 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fei, H. et al. High silicon self-diffusion coefficient in dry forsterite. Earth Planet. Sci. Lett. 345, 95–103 (2012).

    Article 
    ADS 

    Google Scholar 

  • Fei, H. et al. New constraints on upper mantle creep mechanism inferred from silicon grain-boundary diffusion rates. Earth Planet. Sci. Lett. 433, 350–359 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yabe, K. & Hiraga, T. Grain-boundary diffusion creep of olivine: 1. Experiments at 1 atm. J. Geophys. Res. Solid Earth 125, e2020JB019415 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ghosh, S., Koizumi, S. & Hiraga, T. Diffusion creep of diopside. J. Geophys. Res. Solid Earth 126, e2020JB019855 (2021).

    Article 
    ADS 

    Google Scholar 

  • Tasaka, M., Hiraga, T. & Zimmerman, M. E. Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 2. Deformation experiments. J. Geophys. Res. Solid Earth 118, 3991–4012 (2013).

    Article 
    ADS 

    Google Scholar 

  • Fisler, D. K., Mackwell, S. J. & Petsch, S. Grain boundary diffusion in enstatite. Phys. Chem. Miner. 24, 264–273 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Béjina, F. & Jaoul, O. Silicon self-diffusion in quartz and diopside measured by nuclear micro-analysis methods. Phys. Earth Planet. Inter. 97, 145–162 (1996).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *