MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).
Google Scholar
Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).
Chisholm, R. A., Fung, T., Chimalakonda, D. & O’Dwyer, J. P. Maintenance of biodiversity on islands. Proc. R. Soc. B: Biol. Sci. 283, 20160102 (2016).
Google Scholar
Chisholm, R. A. & Fung, T. Examining the generality of the biphasic transition from niche-structured to immigration-structured communities. Theor. Ecol. 15, 1–16 (2022).
Google Scholar
Schrader, J., Moeljono, S., Keppel, G. & Kreft, H. Plants on small islands revisited: the effects of spatial scale and habitat quality on the species–area relationship. Ecography 42, 1405–1414 (2019).
Google Scholar
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).
Shmida, A. V. I. & Wilson, M. V. Biological determinants of species diversity. J. Biogeogr. 12, 1–20 (1985).
Google Scholar
Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).
Google Scholar
Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B 366, 2351–2363 (2011).
Google Scholar
Chase, J. M. et al. Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).
Google Scholar
Leibold, M. A. et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecol. Lett. 7, 601–613 (2004).
Google Scholar
Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).
Google Scholar
Kadmon, R. & Allouche, O. Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: a unification of island biogeography and niche theory. Am. Nat. 170, 443–454 (2007).
Google Scholar
MacArthur, R. H. Patterns of species diversity. Biol. Rev. 40, 510–533 (1965).
Google Scholar
Wilson, E. O. The species equilibrium. Brookhaven Sym. Biol. 22, 38–47 (1969).
Google Scholar
Wright, S. J. Intra-archipelago vertebrate distributions: the slope of the species-area relation. Am. Nat. 118, 726–748 (1981).
Google Scholar
Lomolino, M. V. & Weiser, M. D. Towards a more general species-area relationship: diversity on all islands, great and small. J. Biogeogr. 28, 431–445 (2001).
Google Scholar
Diamond, J. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 342–444 (Harvard Univ. Press, 1975).
Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982).
Google Scholar
Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
Google Scholar
Paine, R. T. & Vadas, R. L. The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations 1. Limnol. Oceanogr. 14, 710–719 (1969).
Google Scholar
Lubchenco, J. & Menge, B. A. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48, 67–94 (1978).
Google Scholar
Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 2711–2726 (1999).
Google Scholar
Hawkins, S. J., Pack, K. E., Hyder, K., Benedetti-Cecchi, L. & Jenkins, S. R. Rocky shores as tractable test systems for experimental ecology. J. Mar. Biol. Assoc. UK 100, 1017–1041 (2020).
Google Scholar
Loke, L. H. L. & Todd, P. A. Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 97, 383–393 (2016).
Google Scholar
Loke, L. H. L., Chisholm, R. A. & Todd, P. A. Effects of habitat area and spatial configuration on biodiversity in an experimental intertidal community. Ecology 100, e02757 (2019).
Google Scholar
Hartanto, R. S. et al. Material type weakly affects algal colonisation but not macrofaunal community in an artificial intertidal habitat. Ecol. Eng. 176, 106514 (2022).
Google Scholar
Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).
Google Scholar
Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 1–7 (2017).
Google Scholar
Triantis, K. A. & Sfenthourakis, S. Island biogeography is not a single‐variable discipline: the small island effect debate. Divers. Distrib. 18, 92–96 (2012).
Google Scholar
Preston, F. W. The canonical distribution of commonness and rarity: part I. Ecology 43, 185–215 (1962).
Google Scholar
Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).
Google Scholar
Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).
Google Scholar
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
Schippers, P., Verschoor, A. M., Vos, M. & Mooij, W. M. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol. Lett. 4, 404–407 (2001).
Google Scholar
Lai, S., Loke, L. H. L., Bouma, T. J. & Todd, P. A. Biodiversity surveys and stable isotope analyses reveal key differences in intertidal assemblages between tropical seawalls and rocky shores. Mar. Ecol. Prog. Ser. 587, 41–53 (2018).
Google Scholar
Lim, L. J. W. et al. Diversity and distribution of intertidal marine species in Singapore. Singapore. Raffles Bull. Zool. 68, 396–403 (2020).
Google Scholar
Turner, I. M. The Ecology of Trees in the Tropical Rain Forest (Cambridge Univ. Press, 2001).
Terborgh, J. Using Janzen–Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).
Google Scholar
Descamps-Julien, B. & Gonzalez, A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815–2824 (2005).
Google Scholar
Levi, M. R. & Bestelmeyer, B. T. Digital soil mapping for fire prediction and management in rangelands. Fire Ecol. 14, 1–12 (2018).
Google Scholar
Chisholm, R. A. & Fung, T. Janzen-Connell effects are a weak impediment to competitive exclusion. Am. Nat. 196, 649–661 (2020).
Google Scholar
Morris, R. L. et al. Design options, implementation issues and evaluating success of ecologically engineered shorelines. Oceanogr. Mar. Biol. 57, 169–228 (2019).
Google Scholar
Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based Solutions to Address Global Societal Challenges (IUCN, Gland, Switzerland, 2016).
Cordonnier, T., Kunstler, G., Courbaud, B. & Morin, X. Managing tree species diversity and ecosystem functions through coexistence mechanisms. Ann. For. Sci. 75, 1–11 (2018).
Google Scholar
Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).
Google Scholar
Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: an experimental test of neutral versus niche processes. Proc. Natl Acad. Sci. USA 100, 8916–8920 (2003).
Google Scholar
Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).
Google Scholar
Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 45–49 (2007).
Google Scholar
Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82 (2006).
Google Scholar
Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast. Manage. 103, 78–85 (2015).
Google Scholar
Climate of Singapore. Meteorological Service Singapore http://www.weather.gov.sg/climate-climate-of-singapore/ (2022).
Van Maren, D. S. & Gerritsen, H. Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment. J. Geophys. Res. 117, C04021 (2012).
Google Scholar
Chapman, M. G. & Bulleri, F. Intertidal seawalls—new features of landscape in intertidal environments. Landsc. Urban Plan. 62, 159–172 (2003).
Google Scholar
Davis, J., Levin, L. & Walther, S. Artificial armored shorelines: sites for open-coast species in a southern California bay. Mar. Biol. 140, 1249–1262 (2002).
Google Scholar
Lee, A. C. & Sin, T. M. Intertidal assemblages on coastal defence structures in Singapore II. Contrasts between islands and the mainland. Raffles Bull. Zool. 22, 255–268 (2009).
Loke, L. H. L., Liao, L. M., Bouma, T. J. & Todd, P. A. Succession of seawall algal communities on artificial substrates. Raffles Bull. Zool. 32, 1–10 (2016).
Hsiung, A. R. et al. Little evidence that lowering the pH of concrete supports greater biodiversity on tropical and temperate seawalls. Mar. Ecol. Prog. Ser. 656, 193–205 (2020).
Google Scholar
Kaehler, S. & Williams, G. A. Early development of algal assemblages under different regimes of physical and biotic factors on a seasonal tropical rocky shore. Mar. Ecol. Prog. Ser. 172, 61–71 (1998).
Google Scholar
Williams, G. A., Davies, M. S. & Nagarkar, S. Primary succession on a seasonal tropical rocky shore: the relative roles of spatial heterogeneity and herbivory. Mar. Ecol. Prog. Ser. 203, 81–94 (2000).
Google Scholar
Tan, S. K. Land Reclamation in Singapore (National University of Singapore, Singapore, 1976).
Hilton, M. J. & Chou, L. M. Sediment facies of a low‐energy, meso‐tidal, fringing reef, Singapore. Singap. J. Trop. Geogr. 20, 111–130 (1999).
Google Scholar
Zhao, K. et al. Modelling surface temperature of granite seawalls in Singapore. Case Stud. Therm. Eng. 13, 100395 (2019).
Google Scholar
Loke, L. H. L., Bouma, T. J. & Todd, P. A. The effects of manipulating microhabitat size and variability on tropical seawall biodiversity: field and flume experiments. J. Exp. Mar. Biol. Ecol. 492, 113–120 (2017).
Google Scholar
Strain, E. M. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 30, 140–153 (2021).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022); https://www.r-project.org/.
Schoener, T. W. Competition and the form of habitat shift. Theor. Popul. Biol. 6, 265–307 (1974).
Google Scholar
Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).
Google Scholar
Chisholm, R. A. & Pacala, S. W. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol. 4, 195–200 (2011).
Google Scholar
Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).