Strange IndiaStrange India


  • MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).

    Article 

    Google Scholar 

  • Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • Chisholm, R. A., Fung, T., Chimalakonda, D. & O’Dwyer, J. P. Maintenance of biodiversity on islands. Proc. R. Soc. B: Biol. Sci. 283, 20160102 (2016).

    Article 

    Google Scholar 

  • Chisholm, R. A. & Fung, T. Examining the generality of the biphasic transition from niche-structured to immigration-structured communities. Theor. Ecol. 15, 1–16 (2022).

    Article 

    Google Scholar 

  • Schrader, J., Moeljono, S., Keppel, G. & Kreft, H. Plants on small islands revisited: the effects of spatial scale and habitat quality on the species–area relationship. Ecography 42, 1405–1414 (2019).

    Article 

    Google Scholar 

  • Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • Shmida, A. V. I. & Wilson, M. V. Biological determinants of species diversity. J. Biogeogr. 12, 1–20 (1985).

    Article 

    Google Scholar 

  • Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B 366, 2351–2363 (2011).

    Article 

    Google Scholar 

  • Chase, J. M. et al. Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Leibold, M. A. et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article 

    Google Scholar 

  • Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Kadmon, R. & Allouche, O. Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: a unification of island biogeography and niche theory. Am. Nat. 170, 443–454 (2007).

    Article 
    PubMed 

    Google Scholar 

  • MacArthur, R. H. Patterns of species diversity. Biol. Rev. 40, 510–533 (1965).

    Article 

    Google Scholar 

  • Wilson, E. O. The species equilibrium. Brookhaven Sym. Biol. 22, 38–47 (1969).

    CAS 

    Google Scholar 

  • Wright, S. J. Intra-archipelago vertebrate distributions: the slope of the species-area relation. Am. Nat. 118, 726–748 (1981).

    Article 

    Google Scholar 

  • Lomolino, M. V. & Weiser, M. D. Towards a more general species-area relationship: diversity on all islands, great and small. J. Biogeogr. 28, 431–445 (2001).

    Article 

    Google Scholar 

  • Diamond, J. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 342–444 (Harvard Univ. Press, 1975).

  • Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982).

    Article 

    Google Scholar 

  • Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).

    Article 

    Google Scholar 

  • Paine, R. T. & Vadas, R. L. The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations 1. Limnol. Oceanogr. 14, 710–719 (1969).

    Article 
    ADS 

    Google Scholar 

  • Lubchenco, J. & Menge, B. A. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48, 67–94 (1978).

    Article 

    Google Scholar 

  • Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 2711–2726 (1999).

    Article 

    Google Scholar 

  • Hawkins, S. J., Pack, K. E., Hyder, K., Benedetti-Cecchi, L. & Jenkins, S. R. Rocky shores as tractable test systems for experimental ecology. J. Mar. Biol. Assoc. UK 100, 1017–1041 (2020).

    Article 

    Google Scholar 

  • Loke, L. H. L. & Todd, P. A. Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 97, 383–393 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Loke, L. H. L., Chisholm, R. A. & Todd, P. A. Effects of habitat area and spatial configuration on biodiversity in an experimental intertidal community. Ecology 100, e02757 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hartanto, R. S. et al. Material type weakly affects algal colonisation but not macrofaunal community in an artificial intertidal habitat. Ecol. Eng. 176, 106514 (2022).

    Article 

    Google Scholar 

  • Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article 

    Google Scholar 

  • Triantis, K. A. & Sfenthourakis, S. Island biogeography is not a single‐variable discipline: the small island effect debate. Divers. Distrib. 18, 92–96 (2012).

    Article 

    Google Scholar 

  • Preston, F. W. The canonical distribution of commonness and rarity: part I. Ecology 43, 185–215 (1962).

    Article 

    Google Scholar 

  • Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).

    Article 
    MathSciNet 

    Google Scholar 

  • Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    Article 
    ADS 

    Google Scholar 

  • Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  • Schippers, P., Verschoor, A. M., Vos, M. & Mooij, W. M. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol. Lett. 4, 404–407 (2001).

    Article 

    Google Scholar 

  • Lai, S., Loke, L. H. L., Bouma, T. J. & Todd, P. A. Biodiversity surveys and stable isotope analyses reveal key differences in intertidal assemblages between tropical seawalls and rocky shores. Mar. Ecol. Prog. Ser. 587, 41–53 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar 

  • Lim, L. J. W. et al. Diversity and distribution of intertidal marine species in Singapore. Singapore. Raffles Bull. Zool. 68, 396–403 (2020).

    ADS 

    Google Scholar 

  • Turner, I. M. The Ecology of Trees in the Tropical Rain Forest (Cambridge Univ. Press, 2001).

  • Terborgh, J. Using Janzen–Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).

    Article 

    Google Scholar 

  • Descamps-Julien, B. & Gonzalez, A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815–2824 (2005).

    Article 

    Google Scholar 

  • Levi, M. R. & Bestelmeyer, B. T. Digital soil mapping for fire prediction and management in rangelands. Fire Ecol. 14, 1–12 (2018).

    Article 

    Google Scholar 

  • Chisholm, R. A. & Fung, T. Janzen-Connell effects are a weak impediment to competitive exclusion. Am. Nat. 196, 649–661 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Morris, R. L. et al. Design options, implementation issues and evaluating success of ecologically engineered shorelines. Oceanogr. Mar. Biol. 57, 169–228 (2019).

    Article 

    Google Scholar 

  • Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based Solutions to Address Global Societal Challenges (IUCN, Gland, Switzerland, 2016).

  • Cordonnier, T., Kunstler, G., Courbaud, B. & Morin, X. Managing tree species diversity and ecosystem functions through coexistence mechanisms. Ann. For. Sci. 75, 1–11 (2018).

    Article 

    Google Scholar 

  • Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).

    Article 

    Google Scholar 

  • Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: an experimental test of neutral versus niche processes. Proc. Natl Acad. Sci. USA 100, 8916–8920 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).

    Article 

    Google Scholar 

  • Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 45–49 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast. Manage. 103, 78–85 (2015).

    Article 

    Google Scholar 

  • Climate of Singapore. Meteorological Service Singapore http://www.weather.gov.sg/climate-climate-of-singapore/ (2022).

  • Van Maren, D. S. & Gerritsen, H. Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment. J. Geophys. Res. 117, C04021 (2012).

    ADS 

    Google Scholar 

  • Chapman, M. G. & Bulleri, F. Intertidal seawalls—new features of landscape in intertidal environments. Landsc. Urban Plan. 62, 159–172 (2003).

    Article 

    Google Scholar 

  • Davis, J., Levin, L. & Walther, S. Artificial armored shorelines: sites for open-coast species in a southern California bay. Mar. Biol. 140, 1249–1262 (2002).

    Article 

    Google Scholar 

  • Lee, A. C. & Sin, T. M. Intertidal assemblages on coastal defence structures in Singapore II. Contrasts between islands and the mainland. Raffles Bull. Zool. 22, 255–268 (2009).

    Google Scholar 

  • Loke, L. H. L., Liao, L. M., Bouma, T. J. & Todd, P. A. Succession of seawall algal communities on artificial substrates. Raffles Bull. Zool. 32, 1–10 (2016).

    Google Scholar 

  • Hsiung, A. R. et al. Little evidence that lowering the pH of concrete supports greater biodiversity on tropical and temperate seawalls. Mar. Ecol. Prog. Ser. 656, 193–205 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar 

  • Kaehler, S. & Williams, G. A. Early development of algal assemblages under different regimes of physical and biotic factors on a seasonal tropical rocky shore. Mar. Ecol. Prog. Ser. 172, 61–71 (1998).

    Article 
    ADS 

    Google Scholar 

  • Williams, G. A., Davies, M. S. & Nagarkar, S. Primary succession on a seasonal tropical rocky shore: the relative roles of spatial heterogeneity and herbivory. Mar. Ecol. Prog. Ser. 203, 81–94 (2000).

    Article 
    ADS 

    Google Scholar 

  • Tan, S. K. Land Reclamation in Singapore (National University of Singapore, Singapore, 1976).

  • Hilton, M. J. & Chou, L. M. Sediment facies of a low‐energy, meso‐tidal, fringing reef, Singapore. Singap. J. Trop. Geogr. 20, 111–130 (1999).

    Article 

    Google Scholar 

  • Zhao, K. et al. Modelling surface temperature of granite seawalls in Singapore. Case Stud. Therm. Eng. 13, 100395 (2019).

    Article 

    Google Scholar 

  • Loke, L. H. L., Bouma, T. J. & Todd, P. A. The effects of manipulating microhabitat size and variability on tropical seawall biodiversity: field and flume experiments. J. Exp. Mar. Biol. Ecol. 492, 113–120 (2017).

    Article 

    Google Scholar 

  • Strain, E. M. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 30, 140–153 (2021).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022); https://www.r-project.org/.

  • Schoener, T. W. Competition and the form of habitat shift. Theor. Popul. Biol. 6, 265–307 (1974).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Chisholm, R. A. & Pacala, S. W. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol. 4, 195–200 (2011).

    Article 

    Google Scholar 

  • Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *