Strange IndiaStrange India


  • 1.

    Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Ruiz, V. E. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat. Commun. 8, 518 (2017).

    ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Korpela, K. et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7, 10410 (2016).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Parker, E. P. K. et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India. Sci. Rep. 7, 9168 (2017).

    ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Zimmermann, M., Patil, K. R., Typas, A. & Maier, L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol. Syst. Biol. 17, e10116 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Uzan-Yulzari, A. et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat. Commun. 12, 443 (2021).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Nagy, E., Boyanova, L., Justesen, U. S. & ESCMID Study Group of Anaerobic Infections. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin. Microbiol. Infect. 24, 1139–1148 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. v.; http://www.eucast.org/clinical_breakpoints/ (2019).

  • 17.

    Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Slimings, C. & Riley, T. V. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J. Antimicrob. Chemother. 69, 881–891 (2014).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Baron, S., Diene, S. & Rolain, J.-M. Human microbiomes and antibiotic resistance. Hum. Microb. J. 10, 43–52 (2018).

    Article 

    Google Scholar 

  • 22.

    Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Habib, G. et al. 2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 36, 3075–3128 (2015).

    Article 

    Google Scholar 

  • 24.

    Kasper, D.L., F. A., Hauser S. L. & Longo D. L. Harrison’s Principles of Internal Medicine (McGraw-Hill, 2012).

  • 25.

    Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    French, G. L. Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J. Antimicrob. Chemother. 58, 1107–111 (2006).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Jelic, D. & Antolovic, R. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics (Basel) 5, 29 (2016).

    Article 

    Google Scholar 

  • 28.

    Nemeth, J., Oesch, G. & Kuster, S. P. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J. Antimicrob. Chemother. 70, 382–395 (2015).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Wald-Dickler, N., Holtom, P. & Spellberg, B. Busting the myth of “static vs cidal” a systemic literature review. Clin. Infect. Dis. 66, 1470–1474 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).

    ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Vogtmann, E. et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS ONE 11 (2016).

  • 37.

    Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Kultima, J. R. et al. MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32, 2520–2523 (2016).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Frostegård, A. et al. Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65, 5409–5420 (1999).

    ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article 

    Google Scholar 

  • 45.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Matias Rodrigues, J. F., Schmidt, T. S. B., Tackmann, J. & von Mering, C. MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis. Bioinformatics 33, 3808–3810 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Matias Rodrigues, J. F. & von Mering, C. HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences. Bioinformatics 30, 287–288 (2014).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Schmidt, T. S. B., Matias Rodrigues, J. F. & von Mering, C. Limits to robustness and reproducibility in the demarcation of operational taxonomic units. Environ. Microbiol. 17, 1689–1706 (2015).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 52.

    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 54.

    Chen, M. et al. Inhibition of renal NQO1 activity by dicoumarol suppresses nitroreduction of aristolochic acid I and attenuates its nephrotoxicity. Toxicol. Sci. 122, 288–296 (2011).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Cai, H. Y. et al. Benzbromarone, an old uricosuric drug, inhibits human fatty acid binding protein 4 in vitro and lowers the blood glucose level in db/db mice. Acta Pharmacol. Sin. 34, 1397–1402 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Herp, S. et al. Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe 25, 681–694 (2019).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 10, 1196–1199 (2013).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *