Strange India All Strange Things About India and world


  • Liu, B., Zhang, J.-G. & Xu, W. Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    Article 
    CAS 

    Google Scholar 

  • Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article 
    CAS 

    Google Scholar 

  • Boyle, D. T. et al. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 5, 701–709 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article 
    CAS 

    Google Scholar 

  • Li, Y., Li, Y. & Cui, Y. Catalyst: how cryo-EM shapes the development of next-generation batteries. Chem 4, 2250–2252 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, E. et al. Expanding the cryogenic electron microscopy toolbox to reveal diverse classes of battery solid electrolyte interphase. iScience 25, 105689 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article 
    CAS 

    Google Scholar 

  • Liu, B. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 32, e2003657 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ren, X. et al. Guided lithium metal deposition and improved lithium Coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3, 14–19 (2017).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–6896 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, J. et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 15, 135–144 (2015).

    Article 
    CAS 

    Google Scholar 

  • Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W. et al. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, e2001740 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, S. et al. Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chem. Eng. J. 404, 126508 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, J. et al. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Odziemkowski, M. & Irish, D. E. An electrochemical study of the reactivity at the lithium electrolyte/bare lithium metal interface. I. Purified electrolytes. J. Electrochem. Soc. 139, 3063–3074 (1992).

    Article 
    CAS 

    Google Scholar 

  • Verbrugge, M. W. & Koch, B. J. Microelectrode investigation of ultrahigh-rate lithium deposition and stripping. J. Electroanal. Chem. 367, 123–129 (1994).

    Article 
    CAS 

    Google Scholar 

  • Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes. Nano Lett. 22, 8224–8232 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mao, H. et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. Angew. Chem. Int. Ed. 60, 19306–19313 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jiang, F. & Peng, P. Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters. Sci. Rep. 6, 32639 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, Z., Wood, D. L., Daniel, C., Kalnaus, S. & Li, J. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J. Appl. Electrochem. 47, 405–415 (2017).

    Article 
    CAS 

    Google Scholar 

  • Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sekerka, R. F. Equilibrium and growth shapes of crystals: how do they differ and why should we care? Cryst. Res. Technol. 40, 291–306 (2005).

    Article 
    CAS 

    Google Scholar 

  • Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gunnarsdóttir, A. B., Vema, S., Menkin, S., Marbella, L. E. & Grey, C. P. Investigating the effect of a fluoroethylene carbonate additive on lithium deposition and the solid electrolyte interphase in lithium metal batteries using in situ NMR spectroscopy. J. Mater. Chem. A 8, 14975–14992 (2020).

    Article 

    Google Scholar 

  • Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article 
    CAS 

    Google Scholar 

  • Behling, C., Mayrhofer, K. J. J. & Berkes, B. B. Formation of lithiated gold and its use for the preparation of reference electrodes—an EQCM study. J. Solid State Electrochem. 25, 2849–2859 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hu, X., Gao, Y., Zhang, B., Shi, L. & Li, Q. Superior cycle performance of Li metal electrode with {110} surface texturing. EcoMat 4, e12264 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sur, U. K., Dhason, A. & Lakshminarayanan, V. A simple and low-cost ultramicroelectrode fabrication and characterization method for undergraduate students. J. Chem. Educ. 89, 168–172 (2011).

    Article 

    Google Scholar 

  • Guo, R. & Gallant, B. M. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater. 32, 5525–5533 (2020).

    Article 
    CAS 

    Google Scholar 

  • Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208 (1997).

    Article 
    CAS 

    Google Scholar 

  • Verbrugge, M. W. & Koch, B. J. Microelectrode study of the lithium/propylene carbonate interface: temperature and concentration dependence of physicochemical parameters. J. Electrochem. Soc. 141, 3053–3059 (1994).

    Article 
    CAS 

    Google Scholar 

  • Churikov, A. V., Gamayunova, I. M. & Shirokov, A. V. Ionic processes in solid-electrolyte passivating films on lithium. J. Solid State Electrochem. 4, 216–224 (2000).

    Article 
    CAS 

    Google Scholar 

  • Churikov, A. V., Nimon, E. S. & Lvov, A. L. Impedance of Li-Sn, Li-Cd and Li-Sn-Cd alloys in propylene carbonate solution. Electrochim. Acta 42, 179–189 (1997).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *