Strange IndiaStrange India


  • Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    CAS 

    Google Scholar 

  • Yazdani, A., da Silva Neto, E. H. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33 (2016).

    ADS 

    Google Scholar 

  • Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    ADS 

    Google Scholar 

  • Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984).

    ADS 
    CAS 

    Google Scholar 

  • Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3. Science 327, 980–983 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mizukami, Y. et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 7, 849–853 (2011).

    CAS 

    Google Scholar 

  • Naritsuka, M. et al. Tuning the pairing interaction in a d-wave superconductor by paramagnons injected through interfaces. Phys. Rev. Lett. 120, 187002 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Jang, B. G., Lee, C., Zhu, J. X. & Shim, J. H. Exploring two-dimensional van der Waals heavy-fermion material: data mining theoretical approach. npj 2D Mater. Appl. 6, 80 (2022).

    Google Scholar 

  • Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  • Fisk, Z., Sarrao, J. L., Smith, J. L. & Thompson, J. D. The physics and chemistry of heavy fermions. Proc. Natl Acad. Sci. 92, 6663–6667 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wirth, S. & Steglich, F. Exploring heavy fermions from macroscopic to microscopic length scales. Nat. Rev. Mater. 1, 16051 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Andres, K., Graebner, J. E. & Ott, H. R. 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35, 1779 (1975).

    ADS 
    CAS 

    Google Scholar 

  • Auerbach, A. & Levin, K. Kondo bosons and the Kondo lattice: microscopic basis for the heavy Fermi liquid. Phys. Rev. Lett. 57, 877 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Nature 440, 65–68 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kimura, N. et al. Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3. Phys. Rev. Lett. 95, 247004 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Steppke, A. et al. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P1−xAsx)2. Science 339, 933–936 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Monthoux, P., Pines, D. & Lonzarich, G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5. Phys. Rev. Lett. 87, 057002 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Settai, R. et al. Quasi-two-dimensional Fermi surfaces and the de Haas–van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5. J. Phys. Condens. Matter 13, L627 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. S. et al. Growth and properties of heavy fermion CeCu2Ge2 and CeFe2Ge2. Appl. Phys. Lett. 99, 042507 (2011).

    ADS 

    Google Scholar 

  • Ishii, T. et al. Tuning the magnetic quantum criticality of artificial superlattices CeRhIn5/YbRhIn5. Phys. Rev. Lett. 116, 206401 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–237 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Levy, P. M. & Zhang, S. Crystal-field splitting in Kondo systems. Phys. Rev. Lett. 62, 78 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77, 235104 (2008).

    ADS 

    Google Scholar 

  • Ru, N. & Fisher, I. R. Thermodynamic and transport properties of YTe3, LaTe3, and CeTe3. Phys. Rev. B 73, 033101 (2006).

    ADS 

    Google Scholar 

  • Ramires, A. & Lado, J. L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 127, 026401 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mattausch, H. & Simon, A. Si6, Si14, and Si22 rings in iodide silicides of rare earth metals. Angew. Chem. Int. Ed. 37, 499–502 (1998).

    CAS 

    Google Scholar 

  • White, B. D., Thompson, J. D. & Maple, M. B. Unconventional superconductivity in heavy-fermion compounds. Phys. C 514, 246–278 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, S. et al. Electronic structure and magnetism in the layered triangular lattice compound CeAuAl4Ge2. Phys. Rev. Mater. 1, 044404 (2017).

    Google Scholar 

  • de Boer, F. R. et al. CeCu2Ge2: magnetic order in a Kondo lattice. J. Magn. Magn. Mater. 63-64, 91–94 (1987).

    ADS 

    Google Scholar 

  • Thamizhavel, A. et al. Anisotropic magnetic properties of a pressure-induced superconductor Ce2Ni3Ge5. J. Phys. Soc. Jpn 74, 2843–2848 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Kashiba, S., Maekawa, S., Takahashi, S. & Tachiki, M. Effect of crystal field on Kondo resistivity in Ce compounds. J. Phys. Soc. Jpn 55, 1341–1349 (1986).

    ADS 
    CAS 

    Google Scholar 

  • Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat. Commun. 9, 3324 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Patil, S. et al. ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2. Nat. Commun. 7, 11029 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Q. Y. et al. Electronic structure study of LaCoIn5 and its comparison with CeCoIn5. Phys. Rev. B 100, 35117 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Reinert, F. et al. Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2. Phys. Rev. Lett. 87, 106401 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Okuma, R., Ritter, C., Nilsen, G. J. & Okada, Y. Magnetic frustration in a van der Waals metal CeSiI. Phys. Rev. Mater. 5, L121401 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Doniach, S. The Kondo lattice and weak antiferromagnetism. Phys. B+C 91, 231–234 (1977).

    ADS 

    Google Scholar 

  • Das, P. et al. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn5. Phys. Rev. Lett. 113, 246403 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

  • Falicov, L. M. & Sievert, P. R. Magnetoresistance and magnetic breakdown. Phys. Rev. Lett. 12, 558 (1964).

    ADS 

    Google Scholar 

  • Fert, A. & Levy, P. M. Theory of the Hall effect in heavy-fermion compounds. Phys. Rev. B 36, 1907 (1987).

    ADS 
    CAS 

    Google Scholar 

  • Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Sheldrick, G. M., IUCr. SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).

    Google Scholar 

  • Sheldrick, G. M., IUCr. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Google Scholar 

  • Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desgranges, H.-U. & Schotte, K. D. Specific heat of the Kondo model. Phys. Lett. A 91, 240–242 (1982).

    ADS 

    Google Scholar 

  • Scheie, A. PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians. J. Appl. Crystallogr. 54, 356–362 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Aoki, D., Knafo, W. & Sheikin, I. Heavy fermions in a high magnetic field. C. R. Phys. 14, 53–77 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Kitazawa, H., Eguchi, S. & Kido, G. Metamagnetic transition in geometrically frustrated system TbPd1−xNixAl. Phys. B 359–361, 223–225 (2005).

    ADS 

    Google Scholar 

  • Cable, J. W., Wilkinson, M. K., Wollan, E. O. & Koehler, W. C. Neutron diffraction investigation of the magnetic order in MnI2. Phys. Rev. 125, 1860 (1962).

    ADS 
    CAS 

    Google Scholar 

  • Kurumaji, T. et al. Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys. Rev. Lett. 106, 167206 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    ADS 

    Google Scholar 

  • Aoki, D. et al. Decoupling between field-instabilities of antiferromagnetism and pseudo-metamagnetism in Rh-doped CeRu2Si2 Kondo lattice. J. Phys. Soc. Jpn 81, 034711 (2012).

    ADS 

    Google Scholar 

  • An, L. et al. Magnetoresistance and Shubnikov–de Haas oscillations in layered Nb3SiTe6 thin flakes. Phys. Rev. B 97, 235133 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    CAS 

    Google Scholar 

  • Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter 9, 767 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Liechtenstein, A. I., Katsnelson, M. I., Antropov, V. P. & Gubanov, V. A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    ADS 
    CAS 

    Google Scholar 

  • Liechtenstein, A. I., Katsnelson, M. I. & Gubanov, V. A. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F: Met. Phys. 14, L125 (1984).

    ADS 
    CAS 

    Google Scholar 

  • He, X., Helbig, N., Verstraete, M. J. & Bousquet, E. TB2J: a Python package for computing magnetic interaction parameters. Comput. Phys. Commun. 264, 107938 (2021).

    MathSciNet 
    CAS 

    Google Scholar 

  • Zhao, S. Y. F. et al. Sign-reversing Hall effect in atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+δ superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Moll, P. J. W. et al. Field-induced density wave in the heavy-fermion compound CeRhIn5. Nat. Commun. 6, 6663 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bachmann, M. D. et al. Spatial control of heavy-fermion superconductivity in CeIrIn5. Science 366, 221–226 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *