Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649–1659 (2003).
Google Scholar
Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).
Google Scholar
Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012).
Google Scholar
Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
Google Scholar
Tenneti, A., Di Matteo, T., Croft, R., Garcia, T. & Feng, Y. The descendants of the first quasars in the BlueTides simulation. Mon. Not. Royal Astron. Soc. 474, 597–603 (2018).
Google Scholar
Smidt, J., Whalen, D. J., Johnson, J. L., Surace, M. & Li, H. Radiation hydrodynamical simulations of the first quasars. Astrophys. J. 865, 126 (2018).
Google Scholar
Huang, K.-W., Di Matteo, T., Bhowmick, A. K., Feng, Y. & Ma, C.-P. BLUETIDES simulation: establishing black hole–galaxy relations at high redshift. Mon. Not. Royal Astron. Soc. 478, 5063–5073 (2018).
Google Scholar
Zhu, Q. et al. The formation of the first quasars. I. The black hole seeds, accretion and feedback models. Preprint at https://arxiv.org/abs/2012.01458 (2020).
Lupi, A., Haiman, Z. & Volonteri, M. Forming massive seed black holes in high-redshift quasar host progenitors. Mon. Not. Royal Astron. Soc. 503, 5046–5060 (2021) .
Google Scholar
Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 345, 1330–1333 (2014) .
Google Scholar
Latif, M. A., Bovino, S., Grassi, T., Schleicher, D. R. G. & Spaans, M. How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes. Mon. Not. Royal Astron. Soc. 446, 3163–3177 (2015) .
Google Scholar
Hirano, S., Hosokawa, T., Yoshida, N. & Kuiper, R. Supersonic gas streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017) .
Google Scholar
Woods, T. E., Heger, A., Whalen, D. J., Haemmerlé, L. & Klessen, R. S. On the maximum mass of accreting primordial supermassive stars. Astrophys. J. 842, L6 (2017) .
Google Scholar
Woods, T. E., Patrick, S., Elford, J. S., Whalen, D. J. & Heger, A. On the evolution of supermassive primordial stars in cosmological flows. Astrophys. J. 915, 110 (2021) .
Google Scholar
Feng, Y., Di Matteo, T., Croft, R. & Khandai, N. High-redshift supermassive black holes: accretion through cold flows. Mon. Not. Royal Astron. Soc. 440, 1865–1879 (2014) .
Google Scholar
Lupi, A. et al. High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers. Mon. Not. Royal Astron. Soc. 488, 4004–4022 (2019) .
Google Scholar
Valentini, M., Gallerani, S. & Ferrara, A. Host galaxies of high-redshift quasars: SMBH growth and feedback. Mon. Not. Royal Astron. Soc. 507, 1–26 (2021) .
Google Scholar
Li, Y. et al. Formation of z ~ 6 quasars from hierarchical galaxy mergers. Astrophys. J. 665, 187–208 (2007) .
Google Scholar
Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019) .
Google Scholar
Bromm, V. & Larson, R. B. The first stars. Ann. Rev. Astron. Astrophys. 42, 79–118 (2004) .
Google Scholar
Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. Royal Astron. Soc. 371, 1813–1823 (2006) .
Google Scholar
Regan, J. A. & Haehnelt, M. G. Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures ≳ 10 000 K. Mon. Not. Royal Astron. Soc. 396, 343–353 (2009) .
Google Scholar
Patrick, S. J., Whalen, D. J., Elford, J. S. & Latif, M. A. The collapse of atomically-cooled primordial haloes. I. High Lyman–Werner backgrounds. Preprint at https://arxiv.org/abs/2012.11612 (2020).
Surace, M. et al. On the detection of supermassive primordial stars. Astrophys. J. 869, L39 (2018).
Google Scholar
Whalen, D. J. et al. Finding direct-collapse black holes at birth. Astrophys. J. 897, L16 (2020) .
Google Scholar
Latif, M. A., Khochfar, S., Schleicher, D. & Whalen, D. J. Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies. Mon. Not. Royal Astron. Soc. 508, 1756–1767 (2021) .
Google Scholar
Agarwal, B., Smith, B., Glover, S., Natarajan, P. & Khochfar, S. New constraints on direct collapse black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 459, 4209–4217 (2016) .
Google Scholar
Valiante, R., Agarwal, B., Habouzit, M. & Pezzulli, E. On the formation of the first quasars. Publ. Astron. Soc. Aust. 34, e031 (2017) .
Google Scholar
Di Matteo, T., Croft, R. A. C., Feng, Y., Waters, D. & Wilkins, S. The origin of the mostmassive black holes at high-z: BlueTides and the next quasar frontier. Mon. Not. Royal Astron. Soc. 467, 4243–4251 (2017) .
Google Scholar
Bryan, G. L. et al. ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211, 19 (2014).
Google Scholar
Efstathiou, G., Davis, M., White, S. D. M. & Frenk, C. S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 57, 241–260 (1985).
Google Scholar
Couchman, H. M. P. Mesh-refined P3M – a fast adaptive N-body algorithm. Astrophys. J. 368, L23–L26 (1991).
Google Scholar
Anninos, P., Zhang, Y., Abel, T. & Norman, M. L. Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling. New Astron. 2, 209–224 (1997).
Google Scholar
Woodward, P. & Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984).
Google Scholar
Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R. & Ostriker, J. P. A piecewise parabolic method for cosmological hydrodynamics. Comput. Phys. Commun. 89, 149–168 (1995).
Google Scholar
Toro, E. F., Spruce, M. & Speares, W. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves 4, 25–34 (1994).
Google Scholar
Glover, S. C. O. & Abel, T. Uncertainties in H2 and HD chemistry and cooling and their role in early structure formation. Mon. Not. Royal Astron. Soc. 388, 1627–1651 (2008).
Google Scholar
Ripamonti, E. & Abel, T. Fragmentation and the formation of primordial protostars: the possible role of collision-induced emission. Mon. Not. Royal Astron. Soc. 348, 1019–1034 (2004).
Google Scholar
Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – I. An improved chemical model. Mon. Not. Royal Astron. Soc. 451, 2082–2096 (2015).
Google Scholar
Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – II. Impact of rate coefficient uncertainties. Mon. Not. Royal Astron. Soc. 453, 2901–2918 (2015).
Google Scholar
Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. Royal Astron. Soc. 415, 2101–2121 (2011).
Google Scholar
Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
Google Scholar
Khandai, N., Feng, Y., DeGraf, C., Di Matteo, T. & Croft, R. A. C. The formation of galaxies hosting z ∼ 6 quasars. Mon. Not. Royal Astron. Soc. 423, 2397–2406 (2012).
Google Scholar
Trenti, M., Santos, M. R. & Stiavelli, M. Where can we really find the first stars’ remnants today? Astrophys. J. 687, 1–6 (2008).
Google Scholar
Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).
Google Scholar
Wise, J. H. Enzo-MRP-music. GitHub https://github.com/jwise77/enzo-mrp-music (2020).
Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R. & Klessen, R. S. A new JeansrResolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62 (2011).
Google Scholar
Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 433, 1607–1618 (2013).
Google Scholar
Hennebelle, P. & Chabrier, G. Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008).
Google Scholar
Federrath, C. The turbulent formation of stars. Phys. Today 71, 38–42 (June, 2018).
Google Scholar
Stacy, A., Bromm, V. & Loeb, A. Rotation speed of the first stars. Mon. Not. Royal Astron. Soc. 413, 543–553 (2011).
Google Scholar
Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).
Google Scholar
Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structure formation with radiative feedback. Astrophys. J. 548, 509–521 (2003).
Google Scholar
Greif, T. H. et al. Simulations on a moving mesh: the clustered formation of Population III protostars. Astrophys. J. 737, 75 (2011).
Google Scholar
Becerra, F., Greif, T. H., Springel, V. & Hernquist, L. E. Formation of massive protostars in atomic cooling haloes. Mon. Not. Royal Astron. Soc. 446, 2380–2393 (2015).
Google Scholar
Becerra, F., Marinacci, F., Bromm, V. & Hernquist, L. E. Assembly of supermassive black hole seeds. Mon. Not. Royal Astron. Soc. 480, 5029–5045 (2018).
Google Scholar
Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016).
Google Scholar
Latif, M. A. & Schleicher, D. R. G. Magnetic fields in primordial accretion disks. Astron. Astrophys. 585, A151 (2016).
Google Scholar
Inayoshi, K. & Haiman, Z. Does disc fragmentation prevent the formation of supermassive stars in protogalaxies? Mon. Not. Royal Astron. Soc. 445, 1549–1557 (2014).
Google Scholar
Regan, J. A. & Downes, T. P. Rise of the first supermassive stars. Mon. Not. Royal Astron. Soc. 478, 5037–5049 (2018).
Google Scholar
Regan, J. A. et al. The formation of very massive stars in early galaxies and implications for intermediate mass black holes. Open J. Astrophys. 3, 15 (2020).
Latif, M. A., Whalen, D. & Khochfar, S. The birth mass function of Population III stars. Astrophys. J. 925, 28 (2022).
Krumholz, M. R., McKee, C. F. & Klein, R. I. Embedding Lagrangian sink particles in Eulerian grids. Astrophys. J. 611, 399–412 (2004).
Google Scholar
Federrath, C., Banerjee, R., Clark, P. C. & Klessen, R. S. Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophys. J. 713, 269–290 (2010).
Google Scholar
Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. C. The characteristic black hole mass resulting from direct collapse in the early Universe. Mon. Not. Royal Astron. Soc. 436, 2989–2996 (2013).
Google Scholar
Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).
Google Scholar
Machacek, M. E., Bryan, G. L. & Abel, T. Effects of a soft X-ray background on structure formation at high redshift. Mon. Not. Royal Astron. Soc. 338, 273–286 (2003).
Google Scholar
Aykutalp, A., Wise, J. H., Spaans, M. & Meijerink, R. Songlines from direct collapse seed black holes: effects of X-rays on black hole growth and stellar populations. Astrophys. J. 797, 139 (2014).
Google Scholar
Aykutalp, A., Barrow, K. S. S., Wise, J. H. & Johnson, J. L. Induced metal-free star formation around a massive black hole seed. Astrophys. J. 898, L53 (2020).
Google Scholar
Chon, S. & Omukai, K. Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Mon. Not. Royal Astron. Soc. 494, 2851–2860 (2020).
Google Scholar
Latif, M. A. & Volonteri, M. Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes. Mon. Not. Royal Astron. Soc. 452, 1026–1044 (2015).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).
Google Scholar
Henyey, L., Vardya, M. S. & Bodenheimer, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841 (1965).
Google Scholar
Rogers, F. J. & Nayfonov, A. Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002).
Google Scholar
Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).
Google Scholar
Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).
Google Scholar
Potekhin, A. Y. & Chabrier, G. Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib. Plasma Phys. 50, 82–87 (2010).
Google Scholar
Chandrasekhar, S. The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Astrophys. J. 140, 417 (1964).
Google Scholar
Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. On the rotation of supermassive stars. Astrophys. J. 853, L3 (2018).
Google Scholar
Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. The evolution of supermassive Population III stars. Mon. Not. Royal Astron. Soc. 474, 2757–2773 (2018).
Google Scholar
Haemmerlé, L. & Meynet, G. Magnetic braking of supermassive stars through winds. Astron. Astrophys. 623, L7 (2019).
Google Scholar
Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).
Google Scholar
Baraffe, I., Heger, A. & Woosley, S. E. On the stability of very massive primordial stars. Astrophys. J. 550, 890–896 (2001).
Google Scholar
Hosokawa, T., Yorke, H. W., Inayoshi, K., Omukai, K. & Yoshida, N. Formation of primordial supermassive stars by rapid mass accretion. Astrophys. J. 778, 178 (2013).
Google Scholar