Strange IndiaStrange India


  • Kühnen, J. et al. Destabilizing turbulence in pipe flow. Nat. Phys. 14, 386–390 (2018).

    Article 

    Google Scholar 

  • Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F.Jr & Gimbrone, M. A. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83, 2114–2117 (1986).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DePaola, N., Gimbrone, M. A. Jr, Davies, P. F.Jr & Dewey, C. F. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. J. Vasc. Biol. 12, 1254–1257 (1992).

    Article 
    CAS 

    Google Scholar 

  • Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16–26 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gimbrone, M. A.Jr & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frenning, L. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems (Hydraulic Institute, Europump, and the US Department of Energy’s Office of Industrial Technologies, 2001).

  • Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192–196 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ku, D. N. et al. Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434 (1997).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Stalder, A. F. et al. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging 33, 839–846 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Nerem, R. M., Rumbergerr, J. A. Jr, Gross, D. R., Hamlin, R. L. & Geiger, G. L. Hot-film anemometer velocity measurements of arterial blood flow in horses. Circ. Res. 34, 193–203 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brunton, S. L. & Noack, B. R. Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 050801 (2015).

    Article 
    ADS 

    Google Scholar 

  • Karniadakis, G. & Choi, K.-S. Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Min, T., Kang, S. M., Speyer, J. L. & Kim, J. Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318 (2006).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Nakanishi, R., Mamori, H. & Fukagata, K. Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012).

    Article 

    Google Scholar 

  • Auteri, F., Baron, A., Belan, M., Campanardi, G. & Quadrio, M. Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22, 115103 (2010).

    Article 
    ADS 

    Google Scholar 

  • Kasagi, N., Suzuki, Y. & Fukagata, K. Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • García-Mayoral, R. & Jiménez, J. Drag reduction by riblets. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 1412–1427 (2011).

    ADS 

    Google Scholar 

  • Virk, P. S., Mickley, H. S. & Smith, K. A. The ultimate asymptote and mean flow structure in Toms’ phenomenon. J. Appl. Mech. 37, 488–493 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Choueiri, G. H., Lopez, J. M. & Hof, B. Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120, 124501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • He, S. & Jackson, J. D. A study of turbulence under conditions of transient flow in a pipe. J. Fluid Mech. 408, 1–38 (2000).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Greenblatt, D. & Moss, E. A. Rapid temporal acceleration of a turbulent pipe flow. J. Fluid Mech. 514, 65–75 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • He, S., Ariyaratne, C. & Vardy, A. E. Wall shear stress in accelerating turbulent pipe flow. J. Fluid Mech. 685, 440–460 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • He, S. & Seddighi, M. Turbulence in transient channel flow. J. Fluid Mech. 715, 60–102 (2013).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • He, K., Seddighi, M. & He, S. DNS study of a pipe flow following a step increase in flow rate. Int. J. Heat Fluid Flow 57, 130–141 (2016).

    Article 

    Google Scholar 

  • Mathur, A. et al. Temporal acceleration of a turbulent channel flow. J. Fluid Mech. 835, 471–490 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cheng, Z., Jelly, T. O., Illingworth, S. J., Marusic, I. & Ooi, A. S. H. Forcing frequency effects on turbulence dynamics in pulsatile pipe flow. Int. J. Heat Fluid Flow 82, 108538 (2020).

    Article 

    Google Scholar 

  • Ariyaratne, C., He, S. & Vardy, A. E. Wall friction and turbulence dynamics in decelerating pipe flows. J. Hydraul. Res. 48, 810–821 (2010).

    Article 

    Google Scholar 

  • Kobayashi, W., Shimura, T., Mitsuishi, A., Iwamoto, K. & Murata, A. Prediction of the drag reduction effect of pulsating pipe flow based on machine learning. Int. J. Heat Fluid Flow 88, 108783 (2021).

    Article 

    Google Scholar 

  • Foggi Rota, G., Monti, A., Rosti, M. E. & Quadrio, M. Saving energy in turbulent flows with unsteady pumping. Sci. Rep. 13, 1299 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bürk, J. et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc. Magn. Reson. 14, 84 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein, P. D. & Sabbah, H. N. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39, 58–65 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • López, J. M. et al. nsCouette—a high-performance code for direct numerical simulations of turbulent Taylor–Couette flow. SoftwareX 11, 100395 (2020).

    Article 

    Google Scholar 

  • Blasius, H. in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens Vol. 131, 1–41 (Springer, 1913); https://doi.org/10.1007/978-3-662-02239-9_1.

  • Tanaka, M., Girard, G., Davis, R., Peuto, A. & Bignell, N. Recommended table for the density of water between 0 °C and 40 °C based on recent experimental reports. Metrologia 38, 301 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Scarselli, D., Lopez, J. M., Varshney, A. & Hof, B. Turbulence suppression by cardiac cycle inspired pulsatile driving of pipe flow: datasets and numerical code used to perform the simulations. Zenodo https://doi.org/10.5281/zenodo.7828996 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *