Kühnen, J. et al. Destabilizing turbulence in pipe flow. Nat. Phys. 14, 386–390 (2018).
Google Scholar
Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F.Jr & Gimbrone, M. A. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83, 2114–2117 (1986).
Google Scholar
DePaola, N., Gimbrone, M. A. Jr, Davies, P. F.Jr & Dewey, C. F. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. J. Vasc. Biol. 12, 1254–1257 (1992).
Google Scholar
Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16–26 (2009).
Google Scholar
Gimbrone, M. A.Jr & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).
Google Scholar
Frenning, L. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems (Hydraulic Institute, Europump, and the US Department of Energy’s Office of Industrial Technologies, 2001).
Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192–196 (2011).
Google Scholar
Ku, D. N. et al. Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434 (1997).
Google Scholar
Stalder, A. F. et al. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J. Magn. Reson. Imaging 33, 839–846 (2011).
Google Scholar
Nerem, R. M., Rumbergerr, J. A. Jr, Gross, D. R., Hamlin, R. L. & Geiger, G. L. Hot-film anemometer velocity measurements of arterial blood flow in horses. Circ. Res. 34, 193–203 (1974).
Google Scholar
Brunton, S. L. & Noack, B. R. Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 050801 (2015).
Google Scholar
Karniadakis, G. & Choi, K.-S. Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003).
Google Scholar
Min, T., Kang, S. M., Speyer, J. L. & Kim, J. Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318 (2006).
Google Scholar
Nakanishi, R., Mamori, H. & Fukagata, K. Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012).
Google Scholar
Auteri, F., Baron, A., Belan, M., Campanardi, G. & Quadrio, M. Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22, 115103 (2010).
Google Scholar
Kasagi, N., Suzuki, Y. & Fukagata, K. Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009).
Google Scholar
García-Mayoral, R. & Jiménez, J. Drag reduction by riblets. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 1412–1427 (2011).
Google Scholar
Virk, P. S., Mickley, H. S. & Smith, K. A. The ultimate asymptote and mean flow structure in Toms’ phenomenon. J. Appl. Mech. 37, 488–493 (1970).
Google Scholar
Choueiri, G. H., Lopez, J. M. & Hof, B. Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120, 124501 (2018).
Google Scholar
He, S. & Jackson, J. D. A study of turbulence under conditions of transient flow in a pipe. J. Fluid Mech. 408, 1–38 (2000).
Google Scholar
Greenblatt, D. & Moss, E. A. Rapid temporal acceleration of a turbulent pipe flow. J. Fluid Mech. 514, 65–75 (2004).
Google Scholar
He, S., Ariyaratne, C. & Vardy, A. E. Wall shear stress in accelerating turbulent pipe flow. J. Fluid Mech. 685, 440–460 (2011).
Google Scholar
He, S. & Seddighi, M. Turbulence in transient channel flow. J. Fluid Mech. 715, 60–102 (2013).
Google Scholar
He, K., Seddighi, M. & He, S. DNS study of a pipe flow following a step increase in flow rate. Int. J. Heat Fluid Flow 57, 130–141 (2016).
Google Scholar
Mathur, A. et al. Temporal acceleration of a turbulent channel flow. J. Fluid Mech. 835, 471–490 (2018).
Google Scholar
Cheng, Z., Jelly, T. O., Illingworth, S. J., Marusic, I. & Ooi, A. S. H. Forcing frequency effects on turbulence dynamics in pulsatile pipe flow. Int. J. Heat Fluid Flow 82, 108538 (2020).
Google Scholar
Ariyaratne, C., He, S. & Vardy, A. E. Wall friction and turbulence dynamics in decelerating pipe flows. J. Hydraul. Res. 48, 810–821 (2010).
Google Scholar
Kobayashi, W., Shimura, T., Mitsuishi, A., Iwamoto, K. & Murata, A. Prediction of the drag reduction effect of pulsating pipe flow based on machine learning. Int. J. Heat Fluid Flow 88, 108783 (2021).
Google Scholar
Foggi Rota, G., Monti, A., Rosti, M. E. & Quadrio, M. Saving energy in turbulent flows with unsteady pumping. Sci. Rep. 13, 1299 (2023).
Google Scholar
Bürk, J. et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc. Magn. Reson. 14, 84 (2012).
Google Scholar
Stein, P. D. & Sabbah, H. N. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39, 58–65 (1976).
Google Scholar
López, J. M. et al. nsCouette—a high-performance code for direct numerical simulations of turbulent Taylor–Couette flow. SoftwareX 11, 100395 (2020).
Google Scholar
Blasius, H. in Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens Vol. 131, 1–41 (Springer, 1913); https://doi.org/10.1007/978-3-662-02239-9_1.
Tanaka, M., Girard, G., Davis, R., Peuto, A. & Bignell, N. Recommended table for the density of water between 0 °C and 40 °C based on recent experimental reports. Metrologia 38, 301 (2001).
Google Scholar
Scarselli, D., Lopez, J. M., Varshney, A. & Hof, B. Turbulence suppression by cardiac cycle inspired pulsatile driving of pipe flow: datasets and numerical code used to perform the simulations. Zenodo https://doi.org/10.5281/zenodo.7828996 (2023).