Slot, M. et al. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant. Cell Environ. 44, 2414–2427 (2021).
Google Scholar
IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Wilson, E. & Raven, P. in Biodiversity (ed. Wilson, E. O.) Ch. 3 (National Academy Press, 1988).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).
Google Scholar
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).
Google Scholar
Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).
Google Scholar
Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. https://doi.org/10.1029/2007JG000632 (2008).
Sachs, J. Über die obere temperaturgränze der vegetation. Flora 47, 5–12 (1864).
Feeley, K. et al. The thermal tolerances, distributions, and performances of tropical montane tree species. Front. For. Glob. Change 3, 25 (2020).
Google Scholar
Krause, G. H. et al. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Funct. Plant Biol. 37, 890–900 (2010).
Google Scholar
O’Sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 23, 209–223 (2017).
Google Scholar
Still, C. J. et al. Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytol. 230, 1746–1753 (2021).
Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, e2019WR026058 (2020).
Google Scholar
Hulley, G. C. et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens. 60, 1–23 (2022).
Google Scholar
Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant. Cell Environ. 41, 1618–1631 (2018).
Google Scholar
Doughty, C. E. An in situ leaf and branch warming experiment in the Amazon. Biotropica 43, 658–665 (2011).
Google Scholar
Carter, K. R., Wood, T. E., Reed, S. C., Butts, K. M. & Cavaleri, M. A. Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation. Plant. Cell Environ. 44, 2879–2897 (2021).
Google Scholar
Rey-Sanchez, A. C., Slot, M., Posada, J. & Kitajima, K. Spatial and seasonal variation of leaf temperature within the canopy of a tropical forest. Clim. Res. 71, 75–89 (2016).
Google Scholar
Crous, K. Y. et al. Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Tree Physiol. tpad054 (2023).
Kivalov, S. N. & Fitzjarrald, D. R. Observing the whole-canopy short-term dynamic response to natural step changes in incident light: characteristics of tropical and temperate forests. Boundary Layer Meteorol. 173, 1–52 (2019).
Google Scholar
Tiwari, R. et al. Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Plant. Cell Environ. 44, 2428–2439 (2021).
da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
Google Scholar
Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).
Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for Earth science research. IEEE Trans. Geosci. Remote Sens. 49, 1304–1315 (2011).
Google Scholar
Gillespie, A. et al. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998).
Google Scholar
Kitudom, N. et al. Thermal safety margins of plant leaves across biomes under a heatwave. Sci. Total Environ. 806, 150416 (2022).
Google Scholar
Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31, 491–543 (1980).
Google Scholar
Blonder, B. & Michaletz, S. T. A model for leaf temperature decoupling from air temperature. Agric. For. Meteorol. 262, 354–360 (2018).
Google Scholar
Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).
Google Scholar
Guha, A. et al. Short-term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical evergreen citrus genotypes. Plant. Cell Environ. 45, 105–120 (2022).
Google Scholar
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
Google Scholar
Dickman, L. T. et al. Homoeostatic maintenance of nonstructural carbohydrates during the 2015–2016 El Niño drought across a tropical forest precipitation gradient. Plant. Cell Environ. 42, 1705–1714 (2019).
Google Scholar
Subasinghe Achchige, Y. M., Volkova, L., Drinnan, A. & Weston, C. J. A quantitative test for heat-induced cell necrosis in vascular cambium and secondary phloem of Eucalyptus obliqua stems. J. Plant Ecol. 14, 160–169 (2021).
Google Scholar
Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
Google Scholar
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).
Google Scholar
Araújo, I. et al. Trees at the Amazonia–Cerrado transition are approaching high temperature thresholds. Environ. Res. Lett. 16, 34047 (2021).
Google Scholar
Miller, S. D. et al. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl. 14, 114–126 (2004).
Google Scholar
da Rocha, H. R. et al. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol. Appl. 14, 22–32 (2004).
Google Scholar
Goulden, M. L. et al. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14, 42–54 (2004).
Google Scholar
Jin, M. & Liang, S. An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Clim. 19, 2867–2881 (2006).
Miller, S. D. et al. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc. Natl Acad. Sci. USA 108, 19431–19435 (2011).
Google Scholar
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).
Google Scholar
Kealy, P. S. & Hook, S. J. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens. 31, 1155–1164 (1993).
Google Scholar
Reichle, R., De Lannoy, G., Koster, R. D., Crow, W. T. & Kimball, J. S. SMAP L4 9 km EASE-grid surface and root zone soil moisture geophysical data, version 3. National Snow and Ice Data Center https://doi.org/10.5067/B59DT1D5UMB4 (2017).
Slot, M., Krause, G. H., Krause, B., Hernández, G. G. & Winter, K. Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynth. Res. 141, 119–130 (2019).
Google Scholar