Strange India All Strange Things About India and world


  • Slot, M. et al. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant. Cell Environ. 44, 2414–2427 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Wilson, E. & Raven, P. in Biodiversity (ed. Wilson, E. O.) Ch. 3 (National Academy Press, 1988).

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

  • Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar 

  • Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).

    Article 
    ADS 

    Google Scholar 

  • Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. https://doi.org/10.1029/2007JG000632 (2008).

  • Sachs, J. Über die obere temperaturgränze der vegetation. Flora 47, 5–12 (1864).

    Google Scholar 

  • Feeley, K. et al. The thermal tolerances, distributions, and performances of tropical montane tree species. Front. For. Glob. Change 3, 25 (2020).

    Article 

    Google Scholar 

  • Krause, G. H. et al. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Funct. Plant Biol. 37, 890–900 (2010).

    Article 

    Google Scholar 

  • O’Sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 23, 209–223 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Still, C. J. et al. Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytol. 230, 1746–1753 (2021).

  • Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, e2019WR026058 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hulley, G. C. et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens. 60, 1–23 (2022).

    Article 

    Google Scholar 

  • Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant. Cell Environ. 41, 1618–1631 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doughty, C. E. An in situ leaf and branch warming experiment in the Amazon. Biotropica 43, 658–665 (2011).

    Article 

    Google Scholar 

  • Carter, K. R., Wood, T. E., Reed, S. C., Butts, K. M. & Cavaleri, M. A. Experimental warming across a tropical forest canopy height gradient reveals minimal photosynthetic and respiratory acclimation. Plant. Cell Environ. 44, 2879–2897 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rey-Sanchez, A. C., Slot, M., Posada, J. & Kitajima, K. Spatial and seasonal variation of leaf temperature within the canopy of a tropical forest. Clim. Res. 71, 75–89 (2016).

    Article 

    Google Scholar 

  • Crous, K. Y. et al. Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Tree Physiol. tpad054 (2023).

  • Kivalov, S. N. & Fitzjarrald, D. R. Observing the whole-canopy short-term dynamic response to natural step changes in incident light: characteristics of tropical and temperate forests. Boundary Layer Meteorol. 173, 1–52 (2019).

    Article 
    ADS 

    Google Scholar 

  • Tiwari, R. et al. Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. Plant. Cell Environ. 44, 2428–2439 (2021).

  • da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

  • Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for Earth science research. IEEE Trans. Geosci. Remote Sens. 49, 1304–1315 (2011).

    Article 
    ADS 

    Google Scholar 

  • Gillespie, A. et al. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36, 1113–1126 (1998).

    Article 
    ADS 

    Google Scholar 

  • Kitudom, N. et al. Thermal safety margins of plant leaves across biomes under a heatwave. Sci. Total Environ. 806, 150416 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31, 491–543 (1980).

    Article 

    Google Scholar 

  • Blonder, B. & Michaletz, S. T. A model for leaf temperature decoupling from air temperature. Agric. For. Meteorol. 262, 354–360 (2018).

    Article 
    ADS 

    Google Scholar 

  • Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Guha, A. et al. Short-term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical evergreen citrus genotypes. Plant. Cell Environ. 45, 105–120 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dickman, L. T. et al. Homoeostatic maintenance of nonstructural carbohydrates during the 2015–2016 El Niño drought across a tropical forest precipitation gradient. Plant. Cell Environ. 42, 1705–1714 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Subasinghe Achchige, Y. M., Volkova, L., Drinnan, A. & Weston, C. J. A quantitative test for heat-induced cell necrosis in vascular cambium and secondary phloem of Eucalyptus obliqua stems. J. Plant Ecol. 14, 160–169 (2021).

    Article 

    Google Scholar 

  • Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article 
    ADS 

    Google Scholar 

  • Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

  • Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).

    Article 

    Google Scholar 

  • Araújo, I. et al. Trees at the Amazonia–Cerrado transition are approaching high temperature thresholds. Environ. Res. Lett. 16, 34047 (2021).

    Article 

    Google Scholar 

  • Miller, S. D. et al. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl. 14, 114–126 (2004).

    Article 

    Google Scholar 

  • da Rocha, H. R. et al. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol. Appl. 14, 22–32 (2004).

    Article 

    Google Scholar 

  • Goulden, M. L. et al. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14, 42–54 (2004).

    Article 

    Google Scholar 

  • Jin, M. & Liang, S. An improved land surface emissivity parameter for land surface models using global remote sensing observations. J. Clim. 19, 2867–2881 (2006).

  • Miller, S. D. et al. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc. Natl Acad. Sci. USA 108, 19431–19435 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kealy, P. S. & Hook, S. J. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens. 31, 1155–1164 (1993).

    Article 
    ADS 

    Google Scholar 

  • Reichle, R., De Lannoy, G., Koster, R. D., Crow, W. T. & Kimball, J. S. SMAP L4 9 km EASE-grid surface and root zone soil moisture geophysical data, version 3. National Snow and Ice Data Center https://doi.org/10.5067/B59DT1D5UMB4 (2017).

  • Slot, M., Krause, G. H., Krause, B., Hernández, G. G. & Winter, K. Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynth. Res. 141, 119–130 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *