Strange India All Strange Things About India and world


  • Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (Soc. Industr. Appl. Math., 1994). Shor’s quantum algorithm demonstrated how to factorize large integers in polynomial time, which is an exponential speed-up over the best classical algorithms.

  • Bernstein, D. J. & Lange, T. Post-quantum cryptography. Nature 549, 188–194 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021). Gidney and Ekerå describe the resources required to implement Shor’s algorithm to break today’s standard cryptography, assuming noisy qubits.

    Article 

    Google Scholar 

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing 175–179 (1984).

  • Alagic, G. et al. Computational security of quantum encryption. In International Conference on Information Theoretic Security 47–71 (Springer, 2016).

  • Barnum, H., Crepeau, C., Gottesman, D., Smith, A. & Tapp, A. Authentication of quantum messages. In Proc. 43rd Annual IEEE Symposium on Foundations of Computer Science 449–458 (IEEE, 2002).

  • Paquin, C., Stebila, D. & Tamvada, G. Benchmarking post-quantum cryptography in TLS. In International Conference on Post-Quantum Cryptography 72–91 (Springer, 2020).

  • Rose, S., Borchert, O., Mitchell, S. & Connelly, S. Zero Trust Architecture (NIST, 2020); https://csrc.nist.gov/publications/detail/sp/800-207/final

  • Kearney, J. J. & Perez-Delgado, C. A. Vulnerability of blockchain technologies to quantum attacks. Array 10, 100065 (2021).

    Article 

    Google Scholar 

  • Lemke, K., Paar, C. & Wolf, M. Embedded Security in Cars (Springer, 2006).

  • Anderson, R. & Fuloria, S. Security economics and critical national infrastructure. In Economics of Information Security and Privacy 55–66 (Springer, 2010).

  • Gura, N., Patel, A., Wander, A., Eberle, H. & Shantz, S. C. Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In International Workshop on Cryptographic Hardware and Embedded Systems 119–132 (Springer, 2004).

  • Rivest, R. L., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978).

    MathSciNet 
    Article 

    Google Scholar 

  • Miller, V. S. Use of elliptic curves in cryptography. In Conference on the Theory and Application of Cryptographic Techniques 417–426 (Springer, 1985).

  • Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987).

    MathSciNet 
    Article 

    Google Scholar 

  • Chang, S. et al. Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition NISTIR 7896 (NIST, 2012).

  • Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J. & Mohaisen, A. XMSS: eXtended Merkle signature scheme. RFC 8391 (2018); https://datatracker.ietf.org/doc/html/rfc8391

  • McGrew, D., Curcio, M. & Fluhrer, S. Leighton-Micali hash-based signatures. RFC 8554 (2019); https://datatracker.ietf.org/doc/html/rfc8554

  • Cooper, D. A. et al. Recommendation for Stateful Hash-based Signature Schemes NIST Special Publication 800-208 (NIST, 2020); https://csrc.nist.gov/publications/detail/sp/800-208/final

  • Alagic, G. et al. Status Report on the Second Round of the NIST Post-quantum Cryptography Standardization Process (US Department of Commerce, NIST, 2020); https://csrc.nist.gov/publications/detail/nistir/8309/finalThis report describes NIST’s findings after evaluation of the second round, and explains the motivation for selecting the seven finalist schemes as well as the eight alternative track schemes for evaluation in the third round.

  • Gheorghiu, V. & Mosca, M. Benchmarking the quantum cryptanalysis of symmetric, public-key and hash-based cryptographic schemes. Preprint at https://arxiv.org/abs/1902.02332 (2019).

  • Bernstein, D. J. et al. SPHINCS: practical stateless hash-based signatures. In Proc. EUROCRYPT Vol. 9056 368–397 (Springer, 2015).

  • Nechvatal, J. et al. Report on the development of the advanced encryption standard (AES). J. Res. Natl Inst. Stand. Technol. 106, 511–577 (2001).

    Article 

    Google Scholar 

  • Chen, L. et al. Report on Post-quantum Cryptography (NIST, 2016); https://csrc.nist.gov/publications/detail/nistir/8105/final

  • McEliece, R. J. A public-key cryptosystem based on algebraic coding theory. Jet Propulsion Laboratory, Pasadena. DSN Progress Reports 4244, 114–116 (1978).

    ADS 

    Google Scholar 

  • Dierks, T. & Allen, C. The TLS protocol version 1.0. RFC 2246 (1999); https://www.ietf.org/rfc/rfc2246.txt

  • Rescorla, E. & Dierks, T. The transport layer security (TLS) protocol version 1.3. RFC 8446 (2018); https://datatracker.ietf.org/doc/html/rfc8446

  • Rescorla, E. & Schiffman, A. The secure hypertext transfer protocol. RFC 2660 (1999); https://datatracker.ietf.org/doc/html/rfc2660

  • Holz, R., Amann, J., Mehani, O., Wachs, M. & Kaafar, M. A. TLS in the wild: an Internet-wide analysis of TLS-based protocols for electronic communication. Proceedings of the Network and Distributed System Security Symposium (NDSS) (2016).

  • Steblia, D., Fluhrer, S. & Gueron, S. Hybrid Key Exchange in TLS 1.3 (IETF, 2020); https://tools.ietf.org/id/draft-stebila-tls-hybrid-design-03.html

  • Tjhai, C. et al. Multiple Key Exchanges in IKEv2 (IETF, 2021); https://www.ietf.org/archive/id/draft-ietf-ipsecme-ikev2-multiple-ke-03.txt

  • CYBER; Quantum-Safe Hybrid Key Exchanges ETSI TS 103 744, (ETSI, 2020); https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf

  • Quantum Safe Cryptography and Security; An Introduction, Benefits, Enablers and Challenges White Paper No. 8 (ETSI, 2015); https://www.etsi.org/technologies/quantum-safe-cryptography

  • Barker, W., Souppaya, M. & Newhouse, W. Migration to Post-Quantum Cryptography (NIST & CSRC, 2021); https://csrc.nist.gov/publications/detail/white-paper/2021/08/04/migration-to-post-quantum-cryptography/final

  • Lu, X. et al. LAC: practical ring-LWE based public-key encryption with byte-level modulus. IACR Cryptol. ePrint Arch. 2018, 1009 (2018).

    Google Scholar 

  • Announcement of nation-wide cryptographic algorithm design competition result. Chinese Association for Cryptology Research https://www.cacrnet.org.cn/site/content/854.html (2021).

  • Alagic, G. et al. Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process (NIST, 2019); https://www.nist.gov/publications/status-report-first-round-nist-post-quantum-cryptography-standardization-process

  • Ott, D. et al. Identifying research challenges in post quantum cryptography migration and cryptographic agility. Preprint at https://arxiv.org/abs/1909.07353 (2019).

  • Bindel, N., Brendel, J., Fischlin, M., Goncalves, B. & Stebila, D. Hybrid key encapsulation mechanisms and authenticated key exchange. In International Conference on Post-Quantum Cryptography 206–226 (Springer, 2019).

  • Crockett, E., Paquin, C. & Stebila, D. Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH. IACR Cryptol. ePrint Arch. 2019, 858 (2019). Implementations of NIST round two PQC algorithms in TLS, providing insightful data on which algorithms are likely to be performant enough for widespread use and which will suffer severe performance issues.

    Google Scholar 

  • Ounsworth, M. & Pala, M. Composite Signatures For Use In Internet PKI (IETF, 2021); https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-sigs-05.txt

  • Barker, E., Chen, L. & Davis, R. Recommendation for Key-Derivation Methods in Key-Establishment Schemes (NIST, 2020); https://www.nist.gov/publications/recommendation-key-derivation-methods-key-establishment-schemes

  • Peikert, C. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10, 283–424 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • Bernstein, D. J., Buchmann, J. & Dahmen, E. Post-Quantum Cryptography (Springer, 2009).

  • Stebila, D. & Mosca, M. Post-quantum key exchange for the internet and the open quantum safe project. In International Conference on Selected Areas in Cryptography 14–37 (Springer, 2016).

  • Langley, A. BoringSSL. GitHub https://github.com/google/boringssl (2020).

  • Duong, T. Tink. GitHub https://github.com/google/tink (2020).

  • Bernstein, D. J. & Lange, T. SUPERCOP: system for unified performance evaluation related to cryptographic operations and primitives (VAMPIRE Lab, 2018); https://bench.cr.yp.to/supercop.html

  • Mosca, M. & Piani, M. Quantum Threat Timeline (Global Risk Institute, 2021); https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/

  • Memorandum on Improving the Cybersecurity of National Security, Department of Defense, and Intelligence Community Systems. The White House https://www.whitehouse.gov/briefing-room/presidential-actions/2022/01/19/memorandum-on-improving-the-cybersecurity-of-national-security-department-of-defense-and-intelligence-community-systems/ (2022).



  • Source link

    Leave a Reply

    Your email address will not be published.