Strange IndiaStrange India


  • 1.

    Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Article 

    Google Scholar 

  • 4.

    Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Romans, M. W. J., Duine, R. A., Sachdev, S. & Stoof, H. T. C. Quantum phase transition in an atomic Bose gas with a Feshbach resonance. Phys. Rev. Lett. 93, 020405 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Radzihovsky, L., Park, J. & Weichman, P. B. Superfluid transitions in bosonic atom-molecule mixtures near a Feshbach resonance. Phys. Rev. Lett. 92, 160402 (2004).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Duine, R. A. & Stoof, H. T. C. Atom–molecule coherence in Bose gases. Phys. Rep. 396, 115–195 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Anderson, P. W. & Morel, P. Generalized Bardeen–Cooper–Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev. 123, 1911 (1961).

  • 11.

    Ho, T.-L. The Bose-Einstein condensate of g-wave molecules and its intrinsic angular momentum. Preprint at https://arxiv.org/abs/2101.05431 (2021).

  • 12.

    Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS-BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Timmermans, E., Furuya, K., Milonni, P. W. & Kerman, A. K. Prospect of creating a composite Fermi-Bose superfluid. Phys. Lett. A 285, 228–233 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Krüger, P., Hadzibabic, Z. & Dalibard, J. Critical point of an interacting two-dimensional atomic Bose gas. Phys. Rev. Lett. 99, 040402 (2007).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Tung, S., Lamporesi, G., Lobser, D., Xia, L. & Cornell, E. A. Observation of the presuperfluid regime in a two-dimensional Bose gas. Phys. Rev. Lett. 105, 230408 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Hung, C.-L., Zhang, X., Gemelke, N. & Chin, C. Observation of scale invariance and universality in two-dimensional Bose gases. Nature 470, 236–239 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Clark, L. W., Gaj, A., Feng, L. & Chin, C. Collective emission of matter-wave jets from driven Bose–Einstein condensates. Nature 551, 356–359 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Mark, M., Meinert, F., Lauber, K. & Nägerl, H.-C. Mott-insulator-aided detection of ultra-narrow Feshbach resonances. SciPost Phys. 5, 055 (2018).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Mark, M. et al. “Stückelberg interferometry” with ultracold molecules. Phys. Rev. Lett. 99, 113201 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Ho, T.-L. & Zhou, Q. Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nat. Phys. 6, 131–134 (2010).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Petrov, D. S. & Shlyapnikov, G. V. Interatomic collisions in a tightly confined Bose gas. Phys. Rev. A 64, 012706 (2001).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Prokof’ev, N. & Svistunov, B. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 66, 043608 (2002).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Prokof’ev, N., Ruebenacker, O. & Svistunov, B. Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett. 87, 270402 (2001).

    Article 

    Google Scholar 

  • 28.

    Hadzibabic, Z. & Dalibard, J. Two-dimensional Bose fluids: an atomic physics perspective. Riv. Nuovo Cim. 34, 389–434 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Ferlaino, F. et al. Collisions of ultracold trapped cesium Feshbach molecules. Laser Phys. 20, 23–31 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Chin, C. et al. Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Idziaszek, Z., Jachymski, K. & Julienne, P. S. Reactive collisions in confined geometries. New J. Phys. 17, 035007 (2015).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Micheli, A. et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Article 

    Google Scholar 

  • 34.

    Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Eigen, C. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Hung, C.-L. In Situ Probing of Two-Dimensional Quantum Gases. http://pi.lib.uchicago.edu/1001/cat/bib/8855526 Thesis, Univ. Chicago (2011).

  • 38.

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *