Strange IndiaStrange India


  • 1.

    Xin, T., Greco, V. & Myung, P. Hardwiring stem cell communication through tissue structure. Cell 164, 1212–1225 (2016).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Guiu, J. et al. Tracing the origin of adult intestinal stem cells. Nature 570, 107–111 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Ouspenskaia, T., Matos, I., Mertz, A. F., Fiore, V. F. & Fuchs, E. WNT–SHH antagonism specifies and expands stem cells prior to niche formation. Cell 164, 156–169 (2016).

    Article 

    Google Scholar 

  • 4.

    Lecuit, T. & Cohen, S. M. Proximal–distal axis formation in the Drosophila leg. Nature 388, 139–145 (1997).

    Article 

    Google Scholar 

  • 5.

    Ruiz-Losada, M., Blom-Dahl, D., Córdoba, S. & Estella, C. Specification and patterning of Drosophila appendages. J. Dev. Biol. 6, E17 (2018).

    Article 

    Google Scholar 

  • 6.

    Pispa, J. & Thesleff, I. Mechanisms of ectodermal organogenesis. Dev. Biol. 262, 195–205 (2003).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Fujiwara, H., Tsutsui, K. & Morita, R. Multi-tasking epidermal stem cells: beyond epidermal maintenance. Dev. Growth Differ. 60, 531–541 (2018).

    Article 

    Google Scholar 

  • 8.

    Solanas, G. & Benitah, S. A. Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat. Rev. Mol. Cell Biol. 14, 737–748 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    Article 

    Google Scholar 

  • 10.

    Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Rhee, H., Polak, L. & Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science 312, 1946–1949 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Xu, Z. et al. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle. eLife 4, e10567 (2015).

    Article 

    Google Scholar 

  • 14.

    Morita, R. et al. Coordination of cellular dynamics contributes to tooth epithelium deformations. PLoS ONE 11, e0161336 (2016).

    Article 

    Google Scholar 

  • 15.

    Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6, 233–238 (2005).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 9, 619 (2018).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Närhi, K. et al. Sostdc1 defines the size and number of skin appendage placodes. Dev. Biol. 364, 149–161 (2012).

    Article 

    Google Scholar 

  • 21.

    Kandyba, E. et al. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc. Natl Acad. Sci. USA 110, 1351–1356 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Genander, M. et al. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15, 619–633 (2014).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Joost, S. et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst. 3, 221–237 (2016).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Kandyba, E., Hazen, V. M., Kobielak, A., Butler, S. J. & Kobielak, K. Smad1 and 5 but not Smad8 establish stem cell quiescence which is critical to transform the premature hair follicle during morphogenesis toward the postnatal state. Stem Cells 32, 534–547 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Saxena, N., Mok, K. W. & Rendl, M. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28, 332–344 (2019).

    Article 

    Google Scholar 

  • 26.

    Maini, P. K., Baker, R. E. & Chuong, C. M. The Turing model comes of molecular age. Science 314, 1397–1398 (2006).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Ahtiainen, L. et al. Directional cell migration, but not proliferation, drives hair placode morphogenesis. Dev. Cell 28, 588–602 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Glover, J. D. et al. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol. 15, e2002117 (2017).

    Article 

    Google Scholar 

  • 29.

    Abe, T. et al. Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging. Genesis 49, 579–590 (2011).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl Acad. Sci. USA 86, 1563–1567 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Biggs, L. C. et al. Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife 7, e36468 (2018).

    Article 

    Google Scholar 

  • 33.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article 

    Google Scholar 

  • 37.

    Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Nakao, K. et al. The development of a bioengineered organ germ method. Nat. Methods 4, 227–230 (2007).

    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *