Strange India All Strange Things About India and world


  • Bibes, M. & Barthélémy, A. Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

    CAS 
    Article 

    Google Scholar 

  • Kleemann, W. Magnetoelectric spintronics. J. Appl. Phys. 114, 027013 (2013).

    Article 

    Google Scholar 

  • Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    CAS 
    Article 

    Google Scholar 

  • Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    CAS 
    Article 

    Google Scholar 

  • Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    CAS 
    Article 

    Google Scholar 

  • Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article 

    Google Scholar 

  • Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article 

    Google Scholar 

  • Zhang, Z. et al. Memory materials and devices: from concept to application. InfoMat 2, 261–290 (2020).

    CAS 
    Article 

    Google Scholar 

  • Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    CAS 
    Article 

    Google Scholar 

  • Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article 

    Google Scholar 

  • Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    CAS 
    Article 

    Google Scholar 

  • Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS 
    Article 

    Google Scholar 

  • Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    CAS 
    Article 

    Google Scholar 

  • Scott, J. F. Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72 (2013).

    CAS 
    Article 

    Google Scholar 

  • Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009).

    CAS 
    Article 

    Google Scholar 

  • Tokunaga, Y., Taguchi, Y., Arima, T.-H. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).

    CAS 
    Article 

    Google Scholar 

  • Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ Press, 2018).

  • Alonso, J., Casais, M., Martínez-Lope, M. & Fernández-Díaz, M. A structural study from neutron diffraction data and magnetic properties of RMn2O5 (R = La, rare earth). J. Phys. Condens. Matter 9, 8515–8526 (1997).

    CAS 
    Article 

    Google Scholar 

  • Chapon, L. et al. Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5. Phys. Rev. Lett. 93, 177402 (2004).

    CAS 
    Article 

    Google Scholar 

  • Chapon, L., Radaelli, P., Blake, G., Park, S. & Cheong, S. Ferroelectricity induced by acentric spin-density waves in YMn2O5. Phys. Rev. Lett. 96, 097601 (2006).

    CAS 
    Article 

    Google Scholar 

  • Kim, J.-H. et al. Magnetic excitations in the low-temperature ferroelectric phase of multiferroic YMn2O5 using inelastic neutron scattering. Phys. Rev. Lett. 107, 097401 (2011).

    Article 

    Google Scholar 

  • Lee, N. et al. Giant tunability of ferroelectric polarization in GdMn2O5. Phys. Rev. Lett. 110, 137203 (2013).

    CAS 
    Article 

    Google Scholar 

  • Giovannetti, G. & van den Brink, J. Electronic correlations decimate the ferroelectric polarization of multiferroic HoMn2O5. Phys. Rev. Lett. 100, 227603 (2008).

    Article 

    Google Scholar 

  • Bukhari, S. H. et al. Magnetoelectric phase diagrams of multiferroic GdMn2O5. Phys. Rev. B 94, 174446 (2016).

    Article 

    Google Scholar 

  • Munõz, A. et al. Magnetic structure and properties of BiMn2O5: a neutron diffraction study. Phys. Rev. B 65, 144423 (2002).

    Article 

    Google Scholar 

  • Vecchini, C. et al. Commensurate magnetic structures of RMn2O5 (R = Y, Ho, Bi) determined by single-crystal neutron diffraction. Phys. Rev. B 77, 134434 (2008).

    Article 

    Google Scholar 

  • Oh, Y. S. et al. Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet. Nat. Commun. 5, 3201 (2014).

    Article 

    Google Scholar 

  • Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

    CAS 
    Article 

    Google Scholar 

  • Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    CAS 
    Article 

    Google Scholar 

  • Nakajima, S. et al. Topological thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    CAS 
    Article 

    Google Scholar 

  • Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    CAS 
    Article 

    Google Scholar 

  • Sushkov, A., Mostovoy, M., Valdés Aguilar, R., Cheong, S.-W. & Drew, H. Electromagnons in multiferroic RMn2O5 compounds and their microscopic origin. J. Phys. Condens. Matter 20, 434210 (2008).

    Article 

    Google Scholar 

  • Ren, W. E. W. & Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 66, 052301 (2002).

    Google Scholar 

  • Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *