Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951). Introduction of the kagome lattice to quantum physics.
Google Scholar
Onsager, L. et al. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).
Google Scholar
Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
Google Scholar
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Google Scholar
Heisenberg, W. Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619–636 (1928).
Google Scholar
Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. Ser. A 165, 372–414 (1938).
Google Scholar
Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A 24, L73 (1991). Identification of electronic structure in a kagome lattice.
Google Scholar
Anderson, P. W. More is different. Science 177, 393–396 (1972).
Google Scholar
Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).
Google Scholar
Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Google Scholar
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Google Scholar
Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. 2015, 014001 (2015).
Keimer, B., Kivelson, S., Norman, M., Uchida, M. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Google Scholar
Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065 (2000).
Google Scholar
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
Google Scholar
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Google Scholar
Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
Google Scholar
Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).
Google Scholar
Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Google Scholar
Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015). Prediction of a kagome Chern magnet.
Google Scholar
Halperin, B. I. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn J. Appl. Phys. 26, 1913–1919 (1987).
Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).
Google Scholar
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Google Scholar
Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
Google Scholar
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Google Scholar
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
Google Scholar
Qi, X.-L. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett. 107, 126803 (2011).
Google Scholar
Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).
Google Scholar
Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).
Google Scholar
Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
Google Scholar
Zhu, W., Gong, S.-S., Zeng, T.-S., Fu, L. & Sheng, D. S. Interaction-driven spontaneous quantum Hall effect on a kagome lattice. Phys. Rev. Lett. 117, 096402 (2016).
Google Scholar
Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).
Google Scholar
Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B 79, 214502 (2009). Prediction of time-reversal-symmetry-breaking kagome superconductivity.
Google Scholar
Kida, T. et al. The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 (2011). Observation of giant anomalous Hall effect in a kagome ferromagnet.
Google Scholar
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a noncollinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). Observation of room-temperature giant anomalous Hall effect in a kagome antiferromagnet.
Google Scholar
Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
Google Scholar
Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).
Google Scholar
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Google Scholar
Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Google Scholar
Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). Observation of massive Dirac fermions in a kagome ferromagnetic metal.
Google Scholar
Yin, J. X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018). Observation of spin–orbit tunability, Berry curvature response and electronic nematicity in a kagome magnet.
Google Scholar
Fenner, L. A., Dee, A. A. & Wills, A. S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys. Condens. Matter 21, 452202 (2009).
Google Scholar
Hou, Z. et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).
Google Scholar
Wang, Q., Yin, Q. & Lei, H. Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2. Chin. Phys. B 29, 017101 (2020).
Google Scholar
Li, Y. et al. Magnetic-field control of topological electronic response near room temperature in correlated kagome magnets. Phys. Rev. Lett. 123, 196604 (2019).
Google Scholar
Ye, L. et al. de Haas–van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2. Nat. Commun. 10, 4870 (2019).
Google Scholar
Tanaka, H. et al. Three-dimensional electronic structure in ferromagnetic Fe3Sn2 with breathing kagome bilayers. Phys. Rev. B 101, 161114(R) (2020).
Google Scholar
Fang, S. Ferromagnetic helical nodal line and Kane–Mele spin–orbit coupling in kagome metal Fe3Sn2. Phys. Rev. B 105, 035107 (2022).
Google Scholar
Venturini, G., ElIdrissi, B. C. & Malaman, B. Magnetic properties of RMn6Sn6 (R = Sc, Y, Gd–Tm, Lu) compounds with HfFe6Ge6 type structure. J. Magn. Magn. Mater. 94, 35–42 (1991).
Google Scholar
Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). Observation of a quantum-limit kagome Chern magnet with topological edge state.
Google Scholar
Ma, W. et al. Rare earth engineering in RMn6Sn6 (R = Gd–Tm, Lu) topological kagome magnets. Phys. Rev. Lett. 126, 246602 (2021).
Google Scholar
Xu, X. et al. Topological charge–entropy scaling in kagome Chern magnet TbMn6Sn6. Nat. Commun. 13, 1197 (2022).
Google Scholar
Zhang, H. et al. Exchange-biased topological transverse thermoelectric effects in a kagome ferrimagnet. Nat. Commun. 13, 1091 (2022).
Google Scholar
Mott, N. F. et al. The Theory of the Properties of Metals and Alloys (Courier Dover Publications, 1958).
Wiedemann, G. & Franz, R. Relative conductivity of solids. Ann. Phys. Chem. 89, 497–531 (1853).
Asaba, T. et al. Anomalous Hall effect in the kagome ferrimagnet GdMn6Sn6. Phys. Rev. B 101, 174415 (2020).
Google Scholar
Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).
Google Scholar
Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).
Google Scholar
Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).
Google Scholar
Peng, S. et al. Realizing kagome band structure in two-dimensional kagome surface states of RV6Sn6 (R=Gd, Ho). Phys. Rev. Lett. 127, 266401 (2021).
Google Scholar
Li, H. et al. Manipulation of Dirac band curvature and momentum-dependent g factor in a kagome magnet. Nat. Phys. 18, 644–649 (2022). Momentum-resolved g factor in a kagome antiferromagnet.
Google Scholar
Riberolles, S. X. M. et al. Low temperature competing magnetic energy scales in the topological ferrimagnet TbMn6Sn6. Phys. Rev. X 12, 021043 (2022).
Chen, D. et al. Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6. Phys. Rev. B 103, 144410 (2021).
Google Scholar
Siegfried, P. E. et al. Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6. Commun. Phys. 5, 58 (2022).
Google Scholar
Armitage, N. P., Mele, E. J. & Vishwannath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Google Scholar
Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).
Google Scholar
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Google Scholar
Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017). Prediction of kagome Weyl materials.
Google Scholar
Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).
Google Scholar
Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).
Google Scholar
Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: structure and type–antitype relations of shandites M3/2As (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).
Google Scholar
Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019). Observation of topological flat-band and orbital magnetization in a kagome magnet.
Google Scholar
Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020). Observation of many-body resonance in a topological kagome magnet.
Google Scholar
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Google Scholar
Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).
Google Scholar
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon 12, 73–78 (2018).
Google Scholar
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).
Google Scholar
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). Proposal for spintronic application of a kagome Weyl magnet.
Google Scholar
Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020).
Google Scholar
Chaudhary, G., Burkov, A. A. & Heinonen, O. G. Magnetism and magnetotransport in the kagome antiferromagnet Mn3Ge. Phys. Rev. B 105, 085108 (2022).
Google Scholar
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Google Scholar
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Google Scholar
Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).
Google Scholar
Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).
Google Scholar
Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). Quasiparticle scattering of the surface Fermi arc states in a kagome magnet.
Google Scholar
Yin, J.-X. et al. Spin–orbit quantum impurity in a topological magnet. Nat. Commun. 11, 4415 (2020).
Google Scholar
Belopolski, I. et al. Signatures of Weyl fermion annihilation in a correlated kagome magnet. Phys. Rev. Lett. 127, 256403 (2021).
Google Scholar
Liu, D. et al. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2. npj Quantum Mater. 7, 11 (2022). Momentum–resolved spin–orbit gap in a kagome Weyl magnet.
Google Scholar
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Google Scholar
Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).
Google Scholar
Si, Q. & Steglich, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010).
Google Scholar
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Google Scholar
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Google Scholar
Liu, Z. H. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).
Google Scholar
Yin, J. X. et al. Fermion–boson many-body interplay in a frustrated kagome paramagnet. Nat. Commun. 11, 4003 (2020).
Google Scholar
Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).
Google Scholar
Meier, W. R. et al. Flat bands in the CoSn-type compounds. Phys. Rev. B 102, 075148 (2020).
Google Scholar
Xie, Y. et al. Spin excitations in metallic kagome lattice FeSn and CoSn. Commun. Phys. 4, 240 (2021).
Google Scholar
Huang, H. et al. Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn. Phys. Rev. Lett. 128, 096601 (2022).
Google Scholar
Wan, S., Lu, H. & Huang, L. Temperature dependence of correlated electronic states in the archetypal kagome metal CoSn. Phys. Rev. B 105, 155131 (2022).
Google Scholar
Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018). Kagome flat-band-induced emergent ferromagnetism.
Google Scholar
Sales, B. C. et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys. Rev. Mater. 3, 114203 (2019).
Google Scholar
Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).
Google Scholar
Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).
Google Scholar
Vanderbilt, D. in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).
Xing, Y. et al. Localized spin–orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).
Google Scholar
Lin, Z. et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Phys. Rev. B 102, 155103 (2020).
Google Scholar
Inoue, H. et al. Molecular beam epitaxy growth of antiferromagnetic kagome metal FeSn. Appl. Phys. Lett. 115, 072403 (2019).
Google Scholar
Han, M. et al. Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat. Commun. 12, 5345 (2021).
Google Scholar
Matthias, B. T., Suhl, H. & Corenzwit, E. Ferromagnetic superconductors. Phys. Rev. Lett. 1, 449 (1958).
Google Scholar
Mielke, C. III et al. Local spectroscopic evidence for a nodeless magnetic kagome superconductor CeRu2. J. Phys. Condens. Matter 34, 485601 (2022).
Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. Superconducting and magnetic properties of new ternary borides with the CeCo3B2-type structure. Solid State Commun. 35, 91 (1980).
Google Scholar
Mielke, C.III. et al. Nodeless kagome superconductivity in LaRu3Si2. Phys. Rev. Mater. 5, 034803 (2021).
Google Scholar
Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).
Google Scholar
Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020). Observation of superconductivity in AV3Sb5compounds.
Google Scholar
Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).
Google Scholar
Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).
Google Scholar
Jiang, Y. X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021). Observation of 2 × 2 charge-density-wave order with magnetic response in a kagome superconductor.
Google Scholar
Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).
Google Scholar
Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).
Google Scholar
van Wezel, J. Chirality and orbital order in charge density waves. Europhys. Lett. 96, 67011 (2011).
Google Scholar
Hildebrand, B. et al. Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave. Phys. Rev. Lett. 120, 136404 (2018).
Google Scholar
Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Google Scholar
Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).
Google Scholar
Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).
Google Scholar
Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021). Observation of pair density wave in a kagome superconductor.
Google Scholar
Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).
Google Scholar
Miao, H. et al. Geometry of the charge density wave in the kagome metal AV3Sb5. Phys. Rev. B 104, 195132 (2021).
Google Scholar
Ratcliff, N. et al. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Phys. Rev. Mater. 5, L111801 (2021).
Google Scholar
Uykur, E. et al. Optical detection of the density-wave instability in the kagome metal KV3Sb5. npj Quantum Mater. 7, 16 (2022).
Google Scholar
Xie, Y. et al. Electron–phonon coupling in the charge density wave state of CsV3Sb5. Phys. Rev. B 105, L140501 (2022).
Google Scholar
Liu, G. et al. Observation of anomalous amplitude modes in the kagome metal CsV3Sb5. Nat. Commun. 13, 3461 (2022).
Google Scholar
Luo, J. et al. Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 30 (2022).
Google Scholar
Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).
Google Scholar
Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).
Google Scholar
Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).
Google Scholar
Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).
Google Scholar
Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).
Google Scholar
Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).
Google Scholar
Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).
Google Scholar
Liu, Z. et al. Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev. X 11, 041010 (2021).
Google Scholar
Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).
Google Scholar
Cho, S. et al. Emergence of new van Hove singularities in the charge density wave state of a topological kagome metal RbV3Sb5. Phys. Rev. Lett. 127, 236401 (2021).
Google Scholar
Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).
Google Scholar
Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).
Google Scholar
Luo, H. et al. Electronic nature of charge density wave and electron–phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).
Google Scholar
Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).
Google Scholar
Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China Phys. Mech. Astron. 65, 247462 (2022).
Google Scholar
Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, abl4108 (2022).
Google Scholar
Neupert, T. et al. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).
Google Scholar
Kenney, E., Ortiz, B., Wang, C., Wilson, S. & Graf, M. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).
Google Scholar
Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).
Google Scholar
Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).
Google Scholar
Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).
Google Scholar
Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).
Google Scholar
Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A=K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).
Google Scholar
Mielke, C. III. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022). Evidence for time-reversal-symmetry-breaking charge order via a magnetic-moment-sensitive probe.
Google Scholar
Guguchia, Z. et al. Tunable nodal kagome superconductivity in charge ordered RV3Sb5. Preprint at https://arxiv.org/abs/2202.07713 (2022).
Khasanov, R. et al. Charge order breaks time-reversal symmetry in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).
Google Scholar
Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. https://doi.org/10.1038/s41567-022-01805-7 (2022).
Guo, C. et al. Switchable chiral transport in charge-ordered CsV3Sb5. Nature 611, 461–466 (2022).
Teng, X.-K. et al. Discovery of charge density wave in a correlated kagome lattice antiferromagnet. Nature 609, 490–495 (2022).
Google Scholar
Yin, J.-X. et al. Discovery of charge order and corresponding edge state in kagome magnet FeGe. Phys. Rev. Lett. 129, 166401 (2022).
Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).
Google Scholar
Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).
Google Scholar
Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).
Google Scholar
Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).
Google Scholar
Song, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).
Google Scholar
Chen, X. et al. Highly robust reentrant superconductivity in CsV3Sb5 under pressure. Chin. Phys. Lett. 38, 057402 (2021).
Google Scholar
Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based kagome metals AV3Sb5 (A=Rb and K). Phys. Rev. B 105, 094507 (2022).
Google Scholar
Oey, Y. et al. Fermi level tuning and double-dome superconductivity in the kagome metals CsV3Sb5−xSnx. Phys. Rev. Mater. 6, L041801 (2022).
Google Scholar
Li, Y. et al. Tuning the competition between superconductivity and charge order in kagome superconductor Cs(V1-xNbx)3Sb5. Phys. Rev. B 105, L180507 (2022).
Google Scholar
Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).
Google Scholar
Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).
Google Scholar
Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Mater. 7, 49 (2022).
Google Scholar
Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).
Google Scholar
Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).
Google Scholar
Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).
Google Scholar
Gu, Y. et al. Gapless excitations inside the fully gapped kagome superconductors AV3Sb5. Phys. Rev. B 105, L100502 (2022).
Google Scholar
Lou, R. et al. Charge-density-wave-induced peak–dip–hump structure and the multiband superconductivity in a kagome superconductor CsV3Sb5. Phys. Rev. Lett. 128, 036402 (2022).
Google Scholar
Keimer, B. & Moore, J. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
Google Scholar
Gao, Z.-A. Design and synthesis of a single-layer ferromagnetic metal−organic framework with topological nontrivial gaps. J. Phys. Chem. C 124, 27017–27023 (2020).
Google Scholar
Fuchs, M. et al. Kagome metal–organic frameworks as a platform for strongly correlated electrons. J. Phys. Mater. 3, 025001 (2020).
Google Scholar
Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, abf1467 (2021).
Google Scholar
Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, abk1480 (2022).
Google Scholar
Muechler, L. et al. Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2. Phys. Rev. B 101, 115106 (2020).
Google Scholar
Howard, S. et al. Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 12, 4269 (2021).
Google Scholar
Regnault, N. et al. Catalogue of flat-band stoichiometric materials. Nature 603, 824–828 (2022).
Google Scholar
Rhim, J. W., Kim, K. & Yang, B. J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Google Scholar
Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).
Google Scholar
Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).
Google Scholar
He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).
Laughlin, R. B. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett. 60, 2677–2680 (1988).
Google Scholar
Kalmeyer, V. & Laughlin, R. B. Theory of the spin liquid state of the Heisenberg antiferromagnet. Phys. Rev. B 39, 11879–11899 (1989).
Google Scholar
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
Google Scholar
Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021).
Google Scholar
Di Sante, D. et al. Turbulent hydrodynamics in strongly correlated kagome metals. Nat. Commun. 11, 3997 (2020).
Google Scholar
Lima, F. C. Double flat bands in kagome twisted bilayers. Phys. Rev. B 100, 155421 (2019).
Google Scholar
Scheer, M. G., Gu, K. & Lian, B. Magic angles in twisted bilayer graphene near commensuration: towards a hypermagic regime. Phys. Rev. B 106, 115418 (2022).
Google Scholar