Strange IndiaStrange India


  • 1.

    Sripad, S. & Viswanathan, V. Performance metrics required of next-generation batteries to make a practical electric semi-truck. ACS Energy Lett. 2, 1669–1673 (2017).

    CAS 

    Google Scholar 

  • 2.

    Viswanathan, V. & Knapp, B. M. Potential for electric aircraft. Nat. Sustainability 2, 88–89 (2019).

    Google Scholar 

  • 3.

    Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Suzuki, K. et al. Extracting the redox orbitals in Li battery materials with high-resolution x-ray Compton scattering spectroscopy. Phys. Rev. Lett. 114, 087401 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Salah, M. et al. Pure silicon thin-film anodes for lithium-ion batteries: a review. J. Power Sources 414, 48–67 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Jia, H. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11, 1474 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Google Scholar 

  • 12.

    Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Clément, R., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).

    Google Scholar 

  • 15.

    Naylor, A. J. et al. Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes. J. Mater. Chem. A Mater. Energy Sustain. 7, 25355–25368 (2019).

    CAS 

    Google Scholar 

  • 16.

    Li, M. et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Mukai, K., Nonaka, T., Uyama, T. & Nishimura, Y. F. In situ X-ray Raman spectroscopy and magnetic susceptibility study on Li [Li0.15Mn1.85] O4 oxygen anion redox reaction. Chem. Commun. 56, 1701–1704 (2020).

    CAS 

    Google Scholar 

  • 19.

    Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Tygesen, A. S., Chang, J. H., Vegge, T. & García-Lastra, J. M. Computational framework for a systematic investigation of anionic redox process in Li-rich compounds. npj Comp. Mater. 6, 65 (2020).

    CAS 

    Google Scholar 

  • 21.

    Bhowmik, A. et al. A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. Energy Storage Materials 21, 446–456 (2019).

    Google Scholar 

  • 22.

    Barbiellini, B. et al. Identifying a descriptor for d-orbital delocalization in cathodes of Li batteries based on x-ray Compton scattering. Appl. Phys. Lett. 109, 073102 (2016).

    ADS 

    Google Scholar 

  • 23.

    Suzuki, K. et al. Non-destructive measurement of in-operando lithium concentration in batteries via X-ray Compton scattering. J. Appl. Phys. 119, 025103 (2016).

    ADS 

    Google Scholar 

  • 24.

    Suzuki, K. et al. In operando quantitation of Li concentration for a commercial Li-ion rechargeable battery using high-energy X-ray Compton scattering. J. Synchrotron Radiat. 24, 1006–1011 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Suzuki, K. et al. Dependency of the charge–discharge rate on lithium reaction distributions for a commercial lithium coin cell visualized by Compton scattering imaging. Condensed Matter 3, 27 (2018).

    CAS 

    Google Scholar 

  • 26.

    Suzuki, K. et al. High-energy X-ray Compton scattering imaging of 18650-type lithium-ion battery cell. Condensed Matter 4, 66 (2019).

    CAS 

    Google Scholar 

  • 27.

    Kaplan, I., Barbiellini, B. & Bansil, A. Compton scattering beyond the impulse approximation. Phys. Rev. B 68, 235104 (2003).

    ADS 

    Google Scholar 

  • 28.

    Hafiz, H. et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 3, e1700971 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Hafiz, H. et al. Identification of ferrimagnetic orbitals preventing spinel degradation by charge ordering in LixMn2O4. Phys. Rev. B 100, 205104 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Sakurai, Y. et al. Imaging doped holes in a cuprate superconductor with high-resolution Compton scattering. Science 332, 698–702 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Schwarz, W. E. Measuring orbitals: provocation or reality? Angew. Chem. Int. Edn 45, 1508–1517 (2006).

    CAS 

    Google Scholar 

  • 32.

    Cooper, M. et al. X-ray Compton Scattering (Oxford Univ. Press, 2004).

  • 33.

    Isaacs, E. et al. Covalency of the hydrogen bond in ice: a direct x-ray measurement. Phys. Rev. Lett. 82, 600 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Eijt, S. W. H. et al. Electronic coupling of colloidal CdSe nanocrystals monitored by thin-film positron-electron momentum density methods. Appl. Phys. Lett. 94, 091908 (2009).

    ADS 

    Google Scholar 

  • 35.

    Hoffmann, L., Shukla, A., Peter, M., Barbiellini, B. & Manuel, A. Linear and non-linear approaches to solve the inverse problem: applications to positron annihilation experiments. Nucl. Instrum. Methods Phys. Res. A 335, 276–287 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Hiraoka, N. et al. A new x-ray spectrometer for high-resolution Compton profile measurements at Spring-8. J. Synchrotron Radiat. 8, 26–32 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Itou, M. et al. Present status of the Cauchois-type Compton scattering spectrometer at Spring8. Nucl. Instrum. Methods Phys. Res. A 467–468, 1109–1112 (2001).

    ADS 

    Google Scholar 

  • 38.

    Sakurai, Y. & Itou, M. A Cauchois-type X-ray spectrometer for momentum density studies on heavy-element materials. J. Phys. Chem. Solids 65, 2061–2064 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar 

  • 41.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 44.

    van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Google Scholar 

  • 45.

    van de Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).

    Google Scholar 

  • 46.

    Makkonen, I., Hakala, M. & Puska, M. Calculation of valence electron momentum densities using the projector augmented-wave method. J. Phys. Chem. Solids 66, 1128–1135 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 47.

    Duncanson, W. E. & Coulson, C. A. Theoretical shape of the Compton profile for atoms from H to Ne. Proc. Phys. Soc. 57, 190 (1945).

    ADS 
    CAS 

    Google Scholar 

  • 48.

    Biggs, F., Mendelsohn, L. B. & Mann, J. B. Hartree-Fock Compton profiles for the elements. Atomic Data Nucl. Data Tables 16, 201–309 (1975).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Kaijser, P. & Smith, V. H. Jr Evaluation of momentum distributions and Compton profiles for atomic and molecular systems. Adv. Quantum Chem. 10, 37–76 (1977).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Weyrich, W., Pattison, P. & Williams, B. G. Fourier analysis of the Compton profile: atoms and molecules. Chem. Phys. 41, 271–284 (1979).

    CAS 

    Google Scholar 

  • 51.

    Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • 52.

    Maintz, S., Deringer, V. L., Tchougreeff, A. L., Dronskowski, R. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *