Strange India All Strange Things About India and world


  • Maier, N., Humphrey, N., Harper, J. & Meierbachtol, T. Sliding dominates slow-flowing margin regions, Greenland Ice Sheet. Sci. Adv. 5, eaaw5406 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010).

    CAS 

    Google Scholar 

  • Hoffman, M., Catania, G. A., Neumann, T., Andrews, L. & Rumrill, J. Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 116, F04035 (2011).

  • Andrews, L. C. et al. Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland. J. Geophys. Res. Earth Surf. 123, 1479–1496 (2018).

    Google Scholar 

  • Williams, J. J., Gourmelen, N. & Nienow, P. Dynamic response of the Greenland Ice Sheet to recent cooling. Sci. Rep. 10, 1647 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 526, 692–695 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Van de Wal, R. et al. Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere 9, 603–611 (2015).

    Google Scholar 

  • Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R. & Nienow, P. W. The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Front. Earth Sci. 7, 10 (2019).

    Google Scholar 

  • Hoffman, M. J. et al. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed. Nat. Commun. 7, 13903 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stevens, L. A. et al. Greenland Ice Sheet flow response to runoff variability. Geophys. Res. Lett. 43, 11295–11303 (2016).

    Google Scholar 

  • Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053–1061 (2018).

    Google Scholar 

  • Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514, 80–83 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Cowton, T., Nienow, P., Sole, A., Bartholomew, I. & Mair, D. Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems. J. Glaciol. 62, 451–466 (2016).

    Google Scholar 

  • Bougamont, M. et al. Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed. Nat. Commun. 5, 5052 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Chandler, D. et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195–198 (2013).

    CAS 

    Google Scholar 

  • Fettweis, X. et al. Estimating the Greenland Ice Sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. TCryosphere 7, 469–489 (2013).

    Google Scholar 

  • Mejía, J. et al. Isolated cavities dominate Greenland Ice Sheet dynamic response to lake drainage. Geophys. Res. Lett. 48, e2021GL094762 (2021).

    Google Scholar 

  • Joughin, I., Smith, B. E. & Howat, I. Greenland ice mapping project: ice flow velocity variation at sub-monthly to decadal time scales. Cryosphere 12, 2211 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Doyle, S. H. et al. Persistent flow acceleration within the interior of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 899–905 (2014).

    Google Scholar 

  • Gagliardini, O. & Werder, M. A. Influence of increasing surface melt over decadal timescales on land-terminating Greenland-type outlet glaciers. J. Glaciol. 64, 700–710 (2018).

    Google Scholar 

  • Goelzer, H. et al. The future sea-level contribution of the Greenland Ice Sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).

  • Maier, N., Gimbert, F., Gillet-Chaulet, F. & Gilbert, A. Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland. Cryosphere 15, 1435–1451 (2021).

    Google Scholar 

  • Joughin, I., Smith, B., Howat, I. & Scambos, T. MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic, Version 1. NSIDC https://doi.org/10.5067/QUA5Q9SVMSJG (2016).

  • Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stevens, L. A. et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522, 73–76 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Selmes, N., Murray, T. & James, T. Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 38, L15501 (2011).

  • Tedstone, A. J. et al. Greenland Ice Sheet motion insensitive to exceptional meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland Ice Sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017).

    Google Scholar 

  • Sole, A. et al. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett. 40, 3940–3944 (2013).

    Google Scholar 

  • Meierbachtol, T., Harper, J. & Humphrey, N. Basal drainage system response to increasing surface melt on the Greenland Ice Sheet. Science 341, 777–779 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Banwell, A., Hewitt, I., Willis, I. & Arnold, N. Moulin density controls drainage development beneath the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 2248–2269 (2016).

    Google Scholar 

  • Röthlisberger, H. Water pressure in intra-and subglacial channels. J. Glaciol. 11, 177–203 (1972).

    Google Scholar 

  • Schoof, C. Ice-sheet acceleration driven by melt supply variability. Nature 468, 803–806 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Stearns, L. A. & van der Veen, C. J. Friction at the bed does not control fast glacier flow. Science 361, 273–277 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gimbert, F., Gilbert, A., Gagliardini, O., Vincent, C. & Moreau, L. Do existing theories explain seasonal to multi-decadal changes in glacier basal sliding speed? Geophys. Res. Lett. 43, e2021GL092858 (2021).

    Google Scholar 

  • Catania, G., Stearns, L., Moon, T., Enderlin, E. & Jackson, R. Future evolution of Greenland’s marine‐terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF004873 (2020).

  • Helanow, C., Iverson, N. R., Woodard, J. B. & Zoet, L. K. A slip law for hard-bedded glaciers derived from observed bed topography. Sci. Adv. 7, eabe7798 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I. & Fahnestock, M. A. Rapid reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf. 125, e2020JF005585 (2020).

    Google Scholar 

  • Werder, M. A., Hewitt, I. J., Schoof, C. G. & Flowers, G. E. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2158 (2013).

    Google Scholar 

  • Brondex, J., Gagliardini, O., Gillet-Chaulet, F. & Durand, G. Sensitivity of grounding line dynamics to the choice of the friction law. J. Glaciol. 63, 854–866 (2017).

    Google Scholar 

  • Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Vandecrux, B. et al. Firn data compilation reveals widespread decrease of firn air content in western Greenland. Cryosphere 13, 845–859 (2019).

    Google Scholar 

  • Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland Drainage Systems (GSFC Cryospheric Sciences Laboratory, 2012); https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems

  • Howat, I., Negrete, A. & Smith, B. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).

    Google Scholar 

  • Howat, I., Negrete, A. & Smith, B. MEaSUREs Greenland Ice Mapping Project (GIMP) digital elevation model from GeoEye and WorldView Imagery, Version 1. NSIDC https://doi.org/10.5067/H0KUYVF53Q8M (2017).

  • Gagliardini, O., Cohen, D., Råback, P. & Zwinger, T. Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res. Earth Surf. 112, F02027 (2007).

  • Weertman, J. The theory of glacier sliding. J. Glaciol. 5, 287–303 (1964).

    Google Scholar 

  • Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morlighem, M. IceBridge BedMachine Greenland, Version 3. NSIDC https://doi.org/10.5067/2CIX82HUV88Y (2018).

  • Joughin, I., Smith, B. E. & Howat, I. M. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. J. Glaciol. 64, 1–11 (2018).

    PubMed 

    Google Scholar 

  • Gagliardini, O. et al. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev. 6, 1299–1318 (2013).

    Google Scholar 

  • Goelzer, H., Robinson, A., Seroussi, H. & van de Wal, R. S. W. Recent progress in Greenland Ice Sheet modelling. Curr. Clim. Change Rep. 3, 291–302 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morlighem, M. et al. Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).

  • Joughin, I., MacAyeal, D. R. & Tulaczyk, S. Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res. Solid Earth 109, B09405 (2004).

  • Quiquet, A. & Dumas, C. The GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for phase 6 of the Coupled Model Intercomparison Project (ISMIP6)—Part 1: projections of the Greenland Ice Sheet evolution by the end of the 21st century. Cryosphere 15, 1015–1030 (2021).

    Google Scholar 

  • Mouginot, J., Rignot, E., Scheuchl, B. & Millan, R. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 9, 364 (2017).

    Google Scholar 

  • MacGregor, J. et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Noël, B. et al. Evaluation of the updated regional climate model RACMO2. 3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9, 1831–1844 (2015).

    Google Scholar 

  • Woodard, J., Zoet, L., Iverson, N. R. & Helanow, C. Linking bedrock discontinuities to glacial quarrying. Ann. Glaciol. 60, 66–72 (2019).

    Google Scholar 

  • Crompton, J. W. & Flowers, G. E. Correlations of suspended sediment size with bedrock lithology and glacier dynamics. Ann. Glaciol. 57, 142–150 (2016).

    Google Scholar 

  • Dawes, P. R. The bedrock geology under the Inland Ice: the next major challenge for Greenland mapping. Geol. Surv. Den. Greenl. Bull. 17, 57–60 (2009).

    Google Scholar 

  • Cooper, M. A. et al. Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology. Cryosphere 13, 3093–3115 (2019).

    Google Scholar 

  • Chu, W. et al. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 43, 12484–12492 (2016).

    Google Scholar 

  • Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. & Jackson, M. Role of transient water pressure in quarrying: a subglacial experiment using acoustic emissions. J. Geophys. Res. Earth Surf. 111, F03006 (2006).

  • Hallet, B. Glacial quarrying: a simple theoretical model. Ann. Glaciol. 22, 1–8 (1996).

    Google Scholar 

  • Poinar, K., Joughin, I., LENAERTS, J. T. & Van Den Broeke, M. R. Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland. J. Glaciol. 63, 1–16 (2017).

    Google Scholar 

  • Harrington, J. A., Humphrey, N. F. & Harper, J. T. Temperature distribution and thermal anomalies along a flowline of the Greenland Ice Sheet. Ann. Glaciol. 56, 98–104 (2015).

    Google Scholar 

  • Karlsson, N. B. et al. A first constraint on basal melt-water production of the Greenland Ice Sheet. Nat. Commun. 12, 3461 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iken, A. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol. 27, 407–421 (1981).

    Google Scholar 

  • Zoet, L. K. & Iverson, N. R. A slip law for glaciers on deformable beds. Science 368, 76–78 (2020).

    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nye, J. F. A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. Lond. A 311, 445–467 (1969).

    Google Scholar 

  • Schwanghart, W. & Scherler, D. TopoToolbox 2—MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).

    Google Scholar 

  • Covington, M., Gulley, J., Trunz, C., Mejia, J. & Gadd, W. Moulin volumes regulate subglacial water pressure on the Greenland Ice Sheet. Geophys. Res. Lett. 47, e2020GL088901 (2020).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.