Strange IndiaStrange India


  • 1.

    Hu, J. & Yu, M. F. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329, 313–316 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Reiser, A. et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat. Commun. 10, 1853 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281–1285 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Luo, J. et al. Printing functional 3D microdevices by laser-induced forward transfer. Small 13, 1602553 (2017).

    Google Scholar 

  • 6.

    Hu, Q. et al. Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Sci. Rep. 7, 17150 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Momotenko, D., Page, A., Adobes-Vidal, M. & Unwin, P. R. Write-read 3D patterning with a dual-channel nanopipette. ACS Nano 10, 8871–8878 (2016).

    CAS 

    Google Scholar 

  • 9.

    Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    An, B. W. et al. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 27, 4322–4328 (2015).

    CAS 

    Google Scholar 

  • 11.

    Saleh, M. S., Hu, C. & Panat, R. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci. Adv. 3, e1601986 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Lewis, J. A. & Ahn, B. Y. Device fabrication: three-dimensional printed electronics. Nature 518, 42–43 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Wu, P. C. et al. Plasmon coupling in vertical split-ring resonator metamolecules. Sci. Rep. 5, 9726 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Wei, T. S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).

    Google Scholar 

  • 17.

    Li, J., Liang, X., Liou, F. & Park, J. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Sci. Rep. 8, 1846 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Dvir, T., Timko, B. P., Kohane, D. S. & Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6, 13–22 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2, 145–155 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Guo, S. Z., Qiu, K., Meng, F., Park, S. H. & McAlpine, M. C. 3D printed stretchable tactile sensors. Adv. Mater. 29, 1701218 (2017).

    Google Scholar 

  • 23.

    Yesilkoy, F., Flauraud, V., Ruegg, M., Kim, B. J. & Brugger, J. 3D nanostructures fabricated by advanced stencil lithography. Nanoscale 8, 4945–4950 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Valiev, R. Materials science: nanomaterial advantage. Nature 419, 887–889 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Kim, H. et al. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nat. Nanotechnol. 1, 117–121 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Lee, H. et al. Three-dimensional assembly of nanoparticles from charged aerosols. Nano Lett. 11, 119–124 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Jung, K. et al. Hotspot-engineered 3D multipetal flower assemblies for surface-enhanced Raman spectroscopy. Adv. Mater. 26, 5924–5929 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Bae, Y., Pikhitsa, P. V., Cho, H. & Choi, M. Multifurcation assembly of charged aerosols and its application to 3D structured gas sensors. Adv. Mater. 29, 1604159 (2017).

    Google Scholar 

  • 30.

    Lin, E. C., Cole, J. J. & Jacobs, H. O. Gas phase electrodeposition: a programmable multimaterial deposition method for combinatorial nanostructured device discovery. Nano Lett. 10, 4494–4500 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Choi, M., Kim, D. S. & Noh, S. R. Spark discharge generator and process for preparing nanoparticle structure using same. South Korea patent KR101891696B1 (2018); https://patents.google.com/patent/KR101891696B1/en.

  • 32.

    Feng, J. C. et al. Green manufacturing of metallic nanoparticles: a facile and universal approach to scaling up. J. Mater. Chem. A 4, 11222–11227 (2016).

    CAS 

    Google Scholar 

  • 33.

    You, S. & Choi, M. Numerical simulation of microscopic motion and deposition of nanoparticles via electrodynamic focusing. J. Aerosol Sci. 38, 1140–1149 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Mark, A. G., Gibbs, J. G., Lee, T. C. & Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 35.

    Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Lasers Eng. 70, 26–32 (2015).

    Google Scholar 

  • 36.

    Yoon, G. et al. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Sci. Rep. 7, 6668 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Cui, A. et al. Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances. Light Sci. Appl. 4, e308 (2015).

    CAS 

    Google Scholar 

  • 38.

    Singer, J. P., Lee, J. H., Kooi, S. E. & Thomas, E. L. Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning. Opt. Express 20, 11097–11108 (2012).

    ADS 

    Google Scholar 

  • 39.

    Katsarakis, N. et al. Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett. 30, 1348–1350 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Schmidt, R. & Webb, A. Metamaterial combining electric- and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging. ACS Appl. Mater. Interfaces 9, 34618–34624 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Tabrizi, N. S., Ullmann, M., Vons, V. A., Lafont, U. & Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanopart. Res. 11, 315–332 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 43.

    Schwyn, S., Garwin, E. & Schmidtott, A. Aerosol generation by spark discharge. J. Aerosol Sci. 19, 639–642 (1988).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *