Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).
Google Scholar
Ohno, S. et al. Materials design of ionic conductors for solid state batteries. Prog. Energy 2, 022001 (2020).
Google Scholar
Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).
Google Scholar
He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).
Google Scholar
Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).
Google Scholar
Funke, K., Cramer, C. & Wilmer, D. in Diffusion in Condensed Matter (eds Heitjans, P. & Kärger, J.) 857–893 (Springer, 2005).
Poletayev, A. D., Dawson, J. A., Islam, M. S. & Lindenberg, A. M. Defect-driven anomalous transport in fast-ion conducting solid electrolytes. Nat. Mater. 21, 1066–1073 (2022).
Google Scholar
Song, S. et al. Transport dynamics of complex fluids. Proc. Natl Acad. Sci. USA 116, 12733–12742 (2019).
Google Scholar
Kavokine, N., Netz, R. R. & Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).
Google Scholar
Agarwal, R. K., Yun, K. Y. & Balakrishnan, R. Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13, 3061–3085 (2001).
Google Scholar
Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).
Google Scholar
Muy, S., Schlem, R., Shao‐Horn, Y. & Zeier, W. G. Phonon–ion interactions: designing ion mobility based on lattice dynamics. Adv. Energy Mater. 11, 2002787 (2021).
Google Scholar
Franco, A. A. et al. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? Chem. Rev. 119, 4569–4627 (2019).
Google Scholar
Murch, G. E. The Haven ratio in fast ionic conductors. Solid State Ionics 7, 177–198 (1982).
Google Scholar
Vargas-Barbosa, N. M. & Roling, B. Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? Chem. Electro. Chem. 7, 367–385 (2020).
Google Scholar
Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 2005).
Maier, J. Physical Chemistry of Ionic Materials Vol. 1 (Wiley, 2004).
Coffey, W. T. & Kalmykov, Y. P. The Langevin Equation. World Scientific Series in Contemporary Chemical Physics Vol. 28 (World Scientific, 2017).
Klafter, J. & Sokolov, I. M. First Steps in Random Walks (Oxford Univ. Press, 2011).
Habasaki, J., Leon, C. & Ngai, K. L. Dynamics of Glassy, Crystalline and Liquid Ionic Conductors 89–250 (Springer, 2017).
Funke, K. & Banhatti, R. D. Conductivity spectroscopy covering 17 decades on the frequency scale. Solid State Ionics 176, 1971–1978 (2005).
Google Scholar
Kamishima, O. et al. Temperature dependence of low-lying phonon dephasing by ultrafast spectroscopy (optical Kerr effect) in Ag β-alumina and Tl β-alumina. J. Phys. Condens. Matter 19, 456215 (2007).
Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).
Google Scholar
Ciliberto, S. Experiments in stochastic thermodynamics: short history and perspectives. Phys. Rev. X 7, 16–21 (2017).
Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4-xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).
Google Scholar
Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).
Google Scholar
Elgabarty, H. et al. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Sci. Adv. 6, eaay7074 (2020).
Google Scholar
Zalden, P. et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nat. Commun. 9, 2142 (2018).
Google Scholar
Hoffmann, M. C., Brandt, N. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Terahertz Kerr effect. Appl. Phys. Lett. 95, 231105 (2009).
Google Scholar
de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).
Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Reports Prog. Phys. 79, 064503 (2016).
Google Scholar
Hebling, J., Yeh, K.-L., Hoffmann, M. C. & Nelson, K. A. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy. IEEE J. Sel. Top. Quantum Electron. 14, 345–353 (2008).
Google Scholar
Hoffmann, M. C. & Fülöp, J. A. Intense ultrashort terahertz pulses: generation and applications. J. Phys. D. Appl. Phys. 44, 083001 (2011).
Yan, Y. X., Gamble, E. B. & Nelson, K. A. Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 83, 5391–5399 (1985).
Google Scholar
Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 102, 207–220 (1997).
Google Scholar
McWhan, D. B., Shapiro, S. M., Remeika, J. P. & Shirane, G. Neutron-scattering studies on beta-alumina. J. Phys. C: Solid State Phys. 8, L487 (1975).
Google Scholar
Lucazeau, G. Infrared, Raman and neutron scattering studies of β- and β″-alumina: a static and dynamical structure analysis. Solid State Ion. 8, 1–25 (1983).
Google Scholar
Sajadi, M., Wolf, M. & Kampfrath, T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles. Nat. Commun. 8, 14963 (2017).
Google Scholar
Allodi, M. A., Finneran, I. A. & Blake, G. A. Nonlinear terahertz coherent excitation of vibrational modes of liquids. J. Chem. Phys. 143, 234204 (2015).
Google Scholar
Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).
Google Scholar
Minami, Y. et al. Macroscopic ionic flow in a superionic conductor Na+ β-alumina driven by single-cycle terahertz pulses. Phys. Rev. Lett. 124, 147401 (2020).
Google Scholar
Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).
Neugebauer, M. J. et al. Comparison of coherent phonon generation by electronic and ionic Raman scattering in LaAlO3. Phys. Rev. Res. 3, 013126 (2021).
Google Scholar
Sajadi, M., Wolf, M. & Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 23, 28985 (2015).
Google Scholar
Maehrlein, S. F. et al. Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect. Proc. Natl Acad. Sci. USA 118, e2022268118 (2021).
Google Scholar
Mishra, P. K., Vendrell, O. & Santra, R. Ultrafast energy transfer from solvent to solute induced by subpicosecond highly intense THz pulses. J. Phys. Chem. B 119, 8080–8086 (2015).
Google Scholar
Mishra, P. K., Bettaque, V., Vendrell, O., Santra, R. & Welsch, R. Prospects of using high-intensity THz pulses to induce ultrafast temperature-jumps in liquid wate. J. Phys. Chem. A 122, 5211–5222 (2018).
Google Scholar
Whittingham, M. S. & Huggins, R. A. Beta alumina – prelude to a revolution in solid state electrochemistry. In Proc. 5th Materials Research Symposium (eds Roth, R. S. & Schneider S. J. Jr) 139–154 (National Bureau of Standards, 1972).
Hayes, W., Hopper, G. F. & Pratt, F. L. Ionic conductivity of potassium β′′ alumina in the very far infrared. J. Phys. C: Solid State Phys. 15, L675–L680 (1982).
Google Scholar
Fleischer, S., Zhou, Y., Field, R. W. & Nelson, K. A. Molecular orientation and alignment by intense single-cycle THz pulses. Phys. Rev. Lett. 107, 1–5 (2011).
Hoffmann, M. C. in Terahertz Spectroscopy and Imaging (eds Peiponen, K.-E. et al.) 355–388 (Springer, 2012).
Zheng, X., Sinyukov, A. & Hayden, L. M. Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair. Appl. Phys. Lett. 87, 87–89 (2005).
McLaughlin, C. V., Zheng, X. & Hayden, L. M. Comparison of parallel-plate and in-plane poled polymer films for terahertz sensing. Appl. Opt. 46, 6283–6290 (2007).
Google Scholar
Poletayev, A. D. Ion Conduction By The Picosecond: Optical Probes and Correlations (Stanford Univ., 2020).
Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).
Morimoto, T. et al. Microscopic ion migration in solid electrolytes revealed by terahertz time-domain spectroscopy. Nat. Commun. 10, 2662 (2019).
Google Scholar
Barkhuijsen, H., de Beer, R., Bovée, W. M. M. J. & van Ormondt, D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Magn. Reson. 61, 465–481 (1985).
Google Scholar
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Google Scholar
Edvardsson, S., Ojamae, L. & Thomas, J. O. A study of vibrational modes in Na+ beta -alumina by molecular dynamics simulation. J. Phys. Cond. Mat. 6, 1319–1332 (1994).
Google Scholar
Poletayev, A. D. et al. Data for the persistence of memory in ionic conduction probed by nonlinear optics. Zenodo https://doi.org/10.5281/zenodo.8169681 (2023).