Strange IndiaStrange India


  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ohno, S. et al. Materials design of ionic conductors for solid state batteries. Prog. Energy 2, 022001 (2020).

    ADS 

    Google Scholar 

  • Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).

    ADS 
    CAS 

    Google Scholar 

  • He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Funke, K., Cramer, C. & Wilmer, D. in Diffusion in Condensed Matter (eds Heitjans, P. & Kärger, J.) 857–893 (Springer, 2005).

  • Poletayev, A. D., Dawson, J. A., Islam, M. S. & Lindenberg, A. M. Defect-driven anomalous transport in fast-ion conducting solid electrolytes. Nat. Mater. 21, 1066–1073 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Song, S. et al. Transport dynamics of complex fluids. Proc. Natl Acad. Sci. USA 116, 12733–12742 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavokine, N., Netz, R. R. & Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).

    ADS 

    Google Scholar 

  • Agarwal, R. K., Yun, K. Y. & Balakrishnan, R. Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13, 3061–3085 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Muy, S., Schlem, R., Shao‐Horn, Y. & Zeier, W. G. Phonon–ion interactions: designing ion mobility based on lattice dynamics. Adv. Energy Mater. 11, 2002787 (2021).

    CAS 

    Google Scholar 

  • Franco, A. A. et al. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? Chem. Rev. 119, 4569–4627 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murch, G. E. The Haven ratio in fast ionic conductors. Solid State Ionics 7, 177–198 (1982).

    CAS 

    Google Scholar 

  • Vargas-Barbosa, N. M. & Roling, B. Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport? Chem. Electro. Chem. 7, 367–385 (2020).

    CAS 

    Google Scholar 

  • Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 2005).

  • Maier, J. Physical Chemistry of Ionic Materials Vol. 1 (Wiley, 2004).

  • Coffey, W. T. & Kalmykov, Y. P. The Langevin Equation. World Scientific Series in Contemporary Chemical Physics Vol. 28 (World Scientific, 2017).

  • Klafter, J. & Sokolov, I. M. First Steps in Random Walks (Oxford Univ. Press, 2011).

  • Habasaki, J., Leon, C. & Ngai, K. L. Dynamics of Glassy, Crystalline and Liquid Ionic Conductors 89–250 (Springer, 2017).

  • Funke, K. & Banhatti, R. D. Conductivity spectroscopy covering 17 decades on the frequency scale. Solid State Ionics 176, 1971–1978 (2005).

    CAS 

    Google Scholar 

  • Kamishima, O. et al. Temperature dependence of low-lying phonon dephasing by ultrafast spectroscopy (optical Kerr effect) in Ag β-alumina and Tl β-alumina. J. Phys. Condens. Matter 19, 456215 (2007).

    Google Scholar 

  • Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).

    CAS 

    Google Scholar 

  • Ciliberto, S. Experiments in stochastic thermodynamics: short history and perspectives. Phys. Rev. X 7, 16–21 (2017).

    Google Scholar 

  • Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4-xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    CAS 

    Google Scholar 

  • Elgabarty, H. et al. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Sci. Adv. 6, eaay7074 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zalden, P. et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nat. Commun. 9, 2142 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, M. C., Brandt, N. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Terahertz Kerr effect. Appl. Phys. Lett. 95, 231105 (2009).

    ADS 

    Google Scholar 

  • de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

  • Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Reports Prog. Phys. 79, 064503 (2016).

    ADS 

    Google Scholar 

  • Hebling, J., Yeh, K.-L., Hoffmann, M. C. & Nelson, K. A. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy. IEEE J. Sel. Top. Quantum Electron. 14, 345–353 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Hoffmann, M. C. & Fülöp, J. A. Intense ultrashort terahertz pulses: generation and applications. J. Phys. D. Appl. Phys. 44, 083001 (2011).

  • Yan, Y. X., Gamble, E. B. & Nelson, K. A. Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 83, 5391–5399 (1985).

    ADS 
    CAS 

    Google Scholar 

  • Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 102, 207–220 (1997).

    ADS 

    Google Scholar 

  • McWhan, D. B., Shapiro, S. M., Remeika, J. P. & Shirane, G. Neutron-scattering studies on beta-alumina. J. Phys. C: Solid State Phys. 8, L487 (1975).

    ADS 
    CAS 

    Google Scholar 

  • Lucazeau, G. Infrared, Raman and neutron scattering studies of β- and β″-alumina: a static and dynamical structure analysis. Solid State Ion. 8, 1–25 (1983).

    CAS 

    Google Scholar 

  • Sajadi, M., Wolf, M. & Kampfrath, T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles. Nat. Commun. 8, 14963 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allodi, M. A., Finneran, I. A. & Blake, G. A. Nonlinear terahertz coherent excitation of vibrational modes of liquids. J. Chem. Phys. 143, 234204 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Minami, Y. et al. Macroscopic ionic flow in a superionic conductor Na+ β-alumina driven by single-cycle terahertz pulses. Phys. Rev. Lett. 124, 147401 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Google Scholar 

  • Neugebauer, M. J. et al. Comparison of coherent phonon generation by electronic and ionic Raman scattering in LaAlO3. Phys. Rev. Res. 3, 013126 (2021).

    CAS 

    Google Scholar 

  • Sajadi, M., Wolf, M. & Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 23, 28985 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maehrlein, S. F. et al. Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect. Proc. Natl Acad. Sci. USA 118, e2022268118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra, P. K., Vendrell, O. & Santra, R. Ultrafast energy transfer from solvent to solute induced by subpicosecond highly intense THz pulses. J. Phys. Chem. B 119, 8080–8086 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, P. K., Bettaque, V., Vendrell, O., Santra, R. & Welsch, R. Prospects of using high-intensity THz pulses to induce ultrafast temperature-jumps in liquid wate. J. Phys. Chem. A 122, 5211–5222 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Whittingham, M. S. & Huggins, R. A. Beta alumina – prelude to a revolution in solid state electrochemistry. In Proc. 5th Materials Research Symposium (eds Roth, R. S. & Schneider S. J. Jr) 139–154 (National Bureau of Standards, 1972).

  • Hayes, W., Hopper, G. F. & Pratt, F. L. Ionic conductivity of potassium β′′ alumina in the very far infrared. J. Phys. C: Solid State Phys. 15, L675–L680 (1982).

    ADS 
    CAS 

    Google Scholar 

  • Fleischer, S., Zhou, Y., Field, R. W. & Nelson, K. A. Molecular orientation and alignment by intense single-cycle THz pulses. Phys. Rev. Lett. 107, 1–5 (2011).

    Google Scholar 

  • Hoffmann, M. C. in Terahertz Spectroscopy and Imaging (eds Peiponen, K.-E. et al.) 355–388 (Springer, 2012).

  • Zheng, X., Sinyukov, A. & Hayden, L. M. Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair. Appl. Phys. Lett. 87, 87–89 (2005).

    Google Scholar 

  • McLaughlin, C. V., Zheng, X. & Hayden, L. M. Comparison of parallel-plate and in-plane poled polymer films for terahertz sensing. Appl. Opt. 46, 6283–6290 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Poletayev, A. D. Ion Conduction By The Picosecond: Optical Probes and Correlations (Stanford Univ., 2020).

  • Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).

  • Morimoto, T. et al. Microscopic ion migration in solid electrolytes revealed by terahertz time-domain spectroscopy. Nat. Commun. 10, 2662 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barkhuijsen, H., de Beer, R., Bovée, W. M. M. J. & van Ormondt, D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Magn. Reson. 61, 465–481 (1985).

    ADS 
    CAS 

    Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Edvardsson, S., Ojamae, L. & Thomas, J. O. A study of vibrational modes in Na+ beta -alumina by molecular dynamics simulation. J. Phys. Cond. Mat. 6, 1319–1332 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Poletayev, A. D. et al. Data for the persistence of memory in ionic conduction probed by nonlinear optics. Zenodo https://doi.org/10.5281/zenodo.8169681 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *