Strange India All Strange Things About India and world


  • Ribeiro, C. & Dickson, B. J. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Corrales-Carvajal, V. M., Faisal, A. A. & Ribeiro, C. Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off. eLife 5, e19920 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Griffioen-Roose, S. et al. Human protein status modulates brain reward responses to food cues. Am. J. Clin. Nutr. 100, 113–122 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hindmarsh Sten, T., Li, R., Otopalik, A. & Ruta, V. Sexual arousal gates visual processing during Drosophila courtship. Nature 595, 549–553 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münch, D., Ezra-Nevo, G., Francisco, A. P., Tastekin, I. & Ribeiro, C. Nutrient homeostasis—translating internal states to behavior. Curr. Opin. Neurobiol. 60, 67–75 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Rolls, E. T. Taste, olfactory, and food reward value processing in the brain. Prog. Neurobiol. 127–128, 64–90 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simpson, S. J. & Abisgold, J. D. Compensation by locusts for changes in dietary nutrients: behavioural mechanisms. Physiol. Entomol. 10, 443–452 (1985).

    Article 

    Google Scholar 

  • Steck, K. et al. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife 7, e31625 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Walker, S. J., Corrales-Carvajal, V. M. & Ribeiro, C. Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr. Biol. 25, 2621–2630 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burgess, C. R., Livneh, Y., Ramesh, R. N. & Andermann, M. L. Gating of visual processing by physiological need. Curr. Opin. Neurobiol. 49, 16–23 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Griffioen-Roose, S. et al. Protein status elicits compensatory changes in food intake and food preferences. Am. J. Clin. Nutr. 95, 32–38 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vogt, K. et al. Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. Sci. Adv. 7, eabd6900 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harris, D. T., Kallman, B. R., Mullaney, B. C. & Scott, K. Representations of taste modality in the Drosophila brain. Neuron 86, 1449–1460 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93–104 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Portugues, R., Feierstein, C. E., Engert, F. & Orger, M. B. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81, 1328–1343 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mann, K., Gallen, C. L. & Clandinin, T. R. Whole-brain calcium imaging reveals an intrinsic functional network in Drosophila. Curr. Biol. 27, 2389–2396.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aimon, S. et al. Fast near-whole–brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 17, e2006732 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marques, J. C., Li, M., Schaak, D., Robson, D. N. & Li, J. M. Internal state dynamics shape brainwide activity and foraging behaviour. Nature 577, 239–243 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, eaav3932 (2019).

    CAS 
    Article 

    Google Scholar 

  • Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: a Unifying Framework from Animal Adaptation to Human Obesity (Princeton Univ. Press, 2012).

  • Carvalho-Santos, Z. et al. Cellular metabolic reprogramming controls sugar appetite in Drosophila. Nat. Metab. 2, 958–973 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15, e2000862 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Simpson, S. J. & Simpson, C. L. Mechanisms controlling modulation by haemolymph amino acids of gustatory responsiveness in the locust. J. Exp. Biol. 168, 269–287 (1992).

    CAS 
    Article 

    Google Scholar 

  • Walker, S. J., Goldschmidt, D. & Ribeiro, C. Craving for the future: the brain as a nutritional prediction system. Curr. Opin. Insect Sci. 23, 96–103 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Miroschnikow, A. et al. Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. eLife 7, e40247 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scott, K. Gustatory processing in Drosophila melanogaster. Annu. Rev. Entomol. 63, 15–30 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schwarz, O. et al. Motor control of Drosophila feeding behavior. eLife 6, e19892 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ito, K. et al. A systematic nomenclature for the insect brain. Neuron 81, 755–765 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miyazaki, T. & Ito, K. Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J. Comp. Neurol. 518, 4147–4181 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Varoquaux, G. et al. A group model for stable multi-subject ICA on fMRI datasets. NeuroImage 51, 288–299 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Inoshita, T. & Tanimura, T. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc. Natl Acad. Sci. USA 103, 1094–1099 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, H., Kirkhart, C. & Scott, K. Long-range projection neurons in the taste circuit of Drosophila. eLife 6, e23386 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Q. et al. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science 356, 534–539 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, Z. et al. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res. 28, 1013–1025 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yapici, N., Cohn, R., Schusterreiter, C., Ruta, V. & Vosshall, L. B. A taste circuit that regulates ingestion by integrating food and hunger signals. Cell 165, 715–729 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Panser, K. et al. Automatic segmentation of Drosophila neural compartments using GAL4 expression data reveals novel visual pathways. Curr. Biol. 26, 1943–1954 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Itskov, P. M. et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5, 4560 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cabanac, M. Physiological role of pleasure. Science 173, 1103–1107 (1971).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Livneh, Y. et al. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 546, 611–616 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Miroschnikow, A., Schlegel, P. & Pankratz, M. J. Making feeding decisions in the Drosophila nervous system. Curr. Biol. 30, R831–R840 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tastekin, I. et al. Role of the subesophageal zone in sensorimotor control of orientation in Drosophila larva. Curr. Biol. 25, 1448–1460 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vendrell-Llopis, N. & Yaksi, E. Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci Rep. 5, 17825 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. P. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moore, J. D., Kleinfeld, D. & Wang, F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 37, 370–380 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marella, S., Mann, K. & Scott, K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73, 941–950 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nakamura, K. & Nakamura, Y. Hunger and satiety signaling: modeling two hypothalamomedullary pathways for energy homeostasis. BioEssays 40, 1700252 (2018).

    Article 

    Google Scholar 

  • Giza, B. K. & Scott, T. R. Blood glucose selectively affects taste-evoked activity in rat nucleus tractus solitarius. Physiol. Behav. 31, 643–650 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, K. et al. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 589, 577–581 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data streams. Front. Neuroinformatics 9, 7 (2015).

    Article 

    Google Scholar 

  • Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. Int. J. 29, 162–173 (1996).

    CAS 
    Article 

    Google Scholar 

  • Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinformatics 8, 14 (2014).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jenett, A. et al. A Gal4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Milyaev, N. et al. The Virtual Fly Brain browser and query interface. Bioinformatics 28, 411–415 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiang, A.-S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 56 (2011).

    Article 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.